Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T11:08:34.229Z Has data issue: false hasContentIssue false

Maternal undernutrition during pregnancy and lactation affects testicular morphology, the stages of spermatogenic cycle, and the testicular IGF-I system in adult offspring

Published online by Cambridge University Press:  28 April 2020

Graciela Pedrana*
Affiliation:
Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
Helen Viotti
Affiliation:
Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
Paula Lombide
Affiliation:
Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
Daniel Cavestany
Affiliation:
Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
Graeme B. Martin
Affiliation:
School of Agriculture and Environment, Faculty of Science, and UWA Institute of Agriculture, University of Western Australia, Perth, Australia
Mark H. Vickers
Affiliation:
Liggins Institute, University of Auckland, Auckland, New Zealand
Deborah M. Sloboda
Affiliation:
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada Department of Pediatrics, McMaster University, Hamilton, Canada Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
*
Address for correspondence: Graciela Pedrana, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay. Email: gpedrana@gmail.com

Abstract

Maternal undernutrition decreases sperm production in male offspring, possibly through insulin-like growth factor (IGF-I). To test this hypothesis, we fed pregnant Wistar rats ad libitum with a standard diet (CONTROL) or fed 50% of CONTROL intake, either throughout pregnancy (UNP), lactation (UNL, or both (UNPL). After weaning, male offspring (n = 10 per treatment) were fed a standard diet until postnatal day 160, when testes process for histological and molecular analyses. IGF-I immunostaining area and intensity in the testis were greater (P = 0.003) in the UNPL group compared to CONTROL, but lower in the UNP group (P < 0.0001). Levels of IGF-I receptor transcript were lower in the UNPL and UNL groups, compared to CONTROL. There were more Ki-67-positive germ and Sertoli cells, in all underfed groups than in CONTROL. Compared to CONTROL, frequency of spermatogenic cycle stage VII was lower in all underfed groups, and seminiferous tubule diameter was smaller in UNP and UNPL. Plasma FSH concentrations were greater in UNP male offspring compared to all groups (P = 0.05), whereas inhibin B concentrations were greater in UNP (P = 0.01) and UNL (P = 0.003) than in CONTROL or UNPL. Thus, prenatal undernutrition leads to a decrease in testicular IGF-I levels, whereas of pre- and postnatal undernutrition increased testicular IGF-I levels and decreased amounts of IGF-I receptor mRNA in adult offspring. We conclude that maternal undernutrition during pregnancy and lactation leads to long-lasting effects on adult male offspring testicular morphology, spermatogenesis, and IGF-I testicular system.

Type
Original Article
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Martín-Estal, I, De La Garza, RG, Castilla-Cortázar, I.Intrauterine growth retardation (IUGR) as a novel condition of insulin-like growth factor-1 (IGF-1) deficiency. Rev Physiol Biochem Pharmacol. 2016; 170. doi: 10.1007/112_2015_5001.Google ScholarPubMed
Jazwiec, PA, Sloboda, DM.Nutritional adversity, sex and reproduction: 30 years of DOHaD and what have we learned? J Endocrinol. 2019; 242(1), T51T68. doi: 10.1530/JOE-19-0048.CrossRefGoogle ScholarPubMed
Chan, KA, Jazwiec, PA, Gohir, W, Petrik, JJ, Sloboda, DM.Maternal nutrient restriction impairs young adult offspring ovarian signaling resulting in reproductive dysfunction and follicle loss†. Biol Reprod. 2018; 98(5), 664682. doi: 10.1093/biolre/ioy008.Google Scholar
Sloboda, DM, Howie, GJ, Pleasants, A, Gluckman, PD, Vickers, MH.Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS One. 2009; 4(8). doi: 10.1371/journal.pone.0006744.CrossRefGoogle ScholarPubMed
Bernal, AB, Vickers, MH, Hampton, MB, Poynton, RA, Sloboda, DM.Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring. Vitzthum VJ, ed. PLoS One. 2010; 5(12), e15558. doi: 10.1371/journal.pone.0015558.CrossRefGoogle ScholarPubMed
Zambrano, E, Rodríguez-González, GL, Guzmán, C, et al.A maternal low protein diet during pregnancy and lactation in the rat impairs male reproductive development. J Physiol. 2005; 563(1), 275284. doi: 10.1113/jphysiol.2004.078543.CrossRefGoogle ScholarPubMed
Toledo, FC, Perobelli, JE, Pedrosa, FPC, Anselmo-Franci, JA, Kempinas, WDG.In utero protein restriction causes growth delay and alters sperm parameters in adult male rats. Reprod Biol Endocrinol. 2011; 9, 94. doi: 10.1186/1477-7827-9-94.CrossRefGoogle ScholarPubMed
Melo, MC, Almeida, FRCL, Caldeira-Brant, AL, Parreira, GG, Chiarini-Garcia, H.Spermatogenesis recovery in protein-restricted rats subjected to a normal protein diet after weaning. Reprod Fertil Dev. 2014; 26(6), 787. doi: 10.1071/RD13032.CrossRefGoogle ScholarPubMed
Genovese, P, Núñez, M, Pombo, C, Bielli, A.Undernutrition during foetal and post-natal life affects testicular structure and reduces the number of Sertoli cells in the adult rat. Reprod Domest Anim. 2010; 45(2), 233236. doi: 10.1111/j.1439-0531.2008.01244.x.CrossRefGoogle ScholarPubMed
Guan, Y, Martin, GB.Cellular and molecular responses of adult testis to changes in nutrition: novel insights from the sheep model. Reproduction. 2017; 154(5), R133R141. doi: 10.1530/REP-17-0061.CrossRefGoogle ScholarPubMed
Spiteri-Grech, J, Nieschlag, E.The role of growth hormone and insulin-like growth factor I in the regulation of male reproductive function. Horm Res Paediatr. 1992; 38, 2227. doi: 10.1159/000182566.CrossRefGoogle ScholarPubMed
Fazeli, PK, Klibanski, A.Determinants of GH resistance in malnutrition. J Endocrinol. 2014; 220(3), R57R65. doi: 10.1530/JOE-13-0477.CrossRefGoogle ScholarPubMed
Smith, T, Sloboda, DM, Saffery, R, Joo, E, Vickers, MH.Maternal nutritional history modulates the hepatic IGF-IGFBP axis in adult male rat offspring. Endocrine. 2014; 46(1), 7082. doi: 10.1007/s12020-013-0034-8.CrossRefGoogle ScholarPubMed
Gatford, KL, Owens, JA, Li, S, et al.Repeated betamethasone treatment of pregnant sheep programs persistent reductions in circulating IGF-I and IGF-binding proteins in progeny. Am J Physiol Metab. 2008; 295(1), E170E178. doi: 10.1152/ajpendo.00047.2008.Google ScholarPubMed
Baker, J, Hardy, MP, Zhou, J, et al.Effects of an Igf1 gene null mutation on mouse reproduction. Mol Endocrinol. 1996; 10(7), 903918. doi: 10.1210/mend.10.7.8813730.Google ScholarPubMed
Salmon, WD, Daughaday, WH.A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. 1956. J Lab Clin Med. 1990; 116(3), 408419. http://www.ncbi.nlm.nih.gov/pubmed/2205697 (Accessed June 13, 2018).Google ScholarPubMed
Bentov, I, Werner, H.Insulin-like Growth Factor-1. In Handbook of Biologically Active Peptides, 2013; pp. 16271632. Elsevier. doi: 10.1016/B978-0-12-385095-9.00222-0.CrossRefGoogle Scholar
Livingstone, C.The insulin-like growth factor system and nutritional assessment. Scientifica (Cairo). 2012; 2012, 768731. doi: 10.6064/2012/768731.Google ScholarPubMed
Dai, G, Wang, D, Dong, HUA.Effects of recombinant human growth hormone on protein malnutrition and IGF-1 and IL-2 gene expression levels in chronic nephrotic syndrome. Exp Ther Med. 2018; 41674172. doi: 10.3892/etm.2018.5953.Google ScholarPubMed
Wang, P, Ji, B, Shao, Q, Zhang, M, Ban, B.Association between insulin-like growth factor-1 and uric acid in Chinese children and adolescents with idiopathic short stature : a cross-sectional study. Biomed Res Int. 2018; 4259098. doi: 10.1155/2018/4259098.Google ScholarPubMed
Aguirre, GA, Ita, JR De, Garza, RG De, Cortazar, IC.Insulinlike growth factor1 deficiency and metabolic syndrome. J Transl Med. 2016; 123. doi: 10.1186/s12967-015-0762-z.Google ScholarPubMed
LeRoith, D, Werner, H, Beitner-Johnson, D, Roberts, CT.Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995; 16(2), 143163. doi: 10.1210/edrv-16-2-143.CrossRefGoogle ScholarPubMed
Leroith, D, Scheinman, EJ, Bitton-Worms, K.The role of insulin and insulin-like growth factors in the increased risk of cancer in diabetes. Rambam Maimonides Med J. 2011; 2(2), e0043. doi: 10.5041/RMMJ.10043.CrossRefGoogle ScholarPubMed
Puche, JE, Castilla-Cortázar, I.Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med. 2012; 10, 224. doi: 10.1186/1479-5876-10-224.CrossRefGoogle ScholarPubMed
Pitetti, J-L, Calvel, P, Zimmermann, C, et al.An essential role for insulin and IGF1 receptors in regulating sertoli cell proliferation, testis size, and FSH action in mice. Mol Endocrinol. 2013; 27(5), 814827. doi: 10.1210/me.2012-1258.CrossRefGoogle ScholarPubMed
Gelber, SJ, Hardy, MP, Chamindrani Mendis-Handagama, SML, Casella, SJ.Effects of insulin-like growth factor-i on androgen production by highly purified pubertal and adult Rat Leydig cells. J Anthol. 1992; 13(2). doi: 10.1111/j.1939-4640.1992.tb01642.x.Google ScholarPubMed
Oka, S, Shiraishi, K, Fujimoto, M, et al.Role of heat shock factor 1 in conserving cholesterol transportation in leydig cell steroidogenesis via steroidogenic acute regulatory protein. Endocrinology. 2017; 158(8), 26482658. doi: 10.1210/en.2017-00132.CrossRefGoogle ScholarPubMed
Yoon, M, Jiang, J, Chung, KH, Roser, JF.Immunolocalization of insulin-like growth factor-I (IGF-I) and its receptors (IGF-IR) in the equine epididymis. J Reprod Dev. 2015; 61(1), 3034. doi: 10.1262/jrd.2014-097.CrossRefGoogle ScholarPubMed
Vickers, MH, Casey, PJ, Champion, ZJ, Gravance, CG, Breier, BH.IGF-I treatment increases motility and improves morphology of immature spermatozoa in the GH-deficient dwarf (dw/dw) rat. Growth Horm IGF Res. 1999; 9(4), 236240. doi: 10.1054/ghir.1999.0114.CrossRefGoogle ScholarPubMed
Breier, BH, Vickers, MH, Gravance, CG, Casey, PJ.Growth hormone (GH) therapy markedly increases the motility of spermatozoa and the concentration of insulin-like growth factor-I in seminal vesicle fluid in the male GH-deficient dwarf rat. Endocrinology. 1996; 137(9), 40614064. doi: 10.1210/endo.137.9.8756586.CrossRefGoogle ScholarPubMed
Vickers, MH, Breier, BH, Cutfield, WS, Hofman, PL, Gluckman, PD.Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol - Endocrinol Metab. 2000; 279(1 42-1). doi: 10.1152/ajpendo.2000.279.1.e83.CrossRefGoogle ScholarPubMed
Chan, KA, Bernal, AB, Vickers, MH, Gohir, W, Petrik, JJ, Sloboda, DM.Early life exposure to undernutrition induces ER stress, apoptosis, and reduced vascularization in ovaries of adult rat offspring. Biol Reprod. 2015; 92(4), 110. doi: 10.1095/biolreprod.114.124149.CrossRefGoogle ScholarPubMed
Howie, GJ, Sloboda, DM, Vickers, MH.Maternal undernutrition during critical windows of development results in differential and sex-specific effects on postnatal adiposity and related metabolic profiles in adult rat offspring. Br J Nutr. 2012; 108(2), 298307. doi: 10.1017/S000711451100554X.CrossRefGoogle ScholarPubMed
Hess, RA, Schaeffer, DJ, Eroschenko, VP, Keen, JE.Frequency of the stages in the cycle of the seminiferous epithelium in the rat. Biol Reprod. 1990; 43(3), 517524. doi: 10.1095/biolreprod43.3.517.CrossRefGoogle ScholarPubMed
Clermont, Y, Huckins, C.Microscopy anatomy of the sex cords and seminiferous tubules in growing and adult male albino rats. Am J Anat. 1961; 107, 7997.CrossRefGoogle Scholar
Cusan, L, Gordeladze, J, Clausen, PF, Parvinen, M, Turner, D.Specific stages of the spermatogenic cycle of the rat. Biol Reprod. 1981; 919, 915919.CrossRefGoogle Scholar
Johnston, DS, Olivas, E, DiCandeloro, P, Wright, WW.Stage-specific changes in GDNF expression by rat Sertoli cells: a possible regulator of the replication and differentiation of stem spermatogonia. Biol Reprod. 2011; 85(4), 763769.CrossRefGoogle ScholarPubMed
Pedrana, G, Viotti, H, Lombide, P, et al.In utero betamethasone affects 3β-hydroxysteroid dehydrogenase and inhibin-α immunoexpression during testis development. J Dev Orig Health Dis. 2016:18. doi: 10.1017/S2040174416000118.Google ScholarPubMed
Hansson, H-A, Billig, H, Isgaard, J. Insulin-like growth factor I in the developing and mature rat testis: immunohistochemical aspects. Biol Reprod. 1989; 40(6), 13211328. doi: 10.1095/biolreprod40.6.1321.CrossRefGoogle ScholarPubMed
Orth, JM.Proliferation of sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat Rec. 1982; 203(4), 485492. doi: 10.1002/ar.1092030408.CrossRefGoogle ScholarPubMed
Fazeli, PK, Klibanski, A.Determinants of GH resistance in malnutrition. J Endocrinol. 2014; 220(3), R57R65. doi: 10.1530/JOE-13-0477.CrossRefGoogle ScholarPubMed
Hawkes, CP, Grimberg, A.Insulin-like growth factor-I is a marker for the nutritional state. Pediatr Endocrinol Rev. 2015; 13(2), 499511.Google ScholarPubMed
Griffeth, RJ, Bianda, V, Nef, S.The emerging role of insulin-like growth factors in testis development and function. Basic Clin Androl. 2014; 24(1), 12. doi: 10.1186/2051-4190-24-12.CrossRefGoogle ScholarPubMed
Neirijnck, Y, Calvel, P, Kilcoyne, KR, et al.Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells. FASEB J. 2018; 32(6), 33213335. doi: 10.1096/fj.201700769RR.CrossRefGoogle ScholarPubMed
Froment, P, Vigier, M, Negre, D, et al.Inactivation of the IGF-I receptor gene in primary Sertoli cells highlights the autocrine effects of IGF-I. J Endocrinol. 2007; 194(3), 557568. doi: 10.1677/JOE-07-0258.CrossRefGoogle ScholarPubMed
Horn, MM, Ramos, AR, Winkelmann, L, Matte, US, Goldani, HA, Silveira, TR.Seminiferous epithelium of rats with food restriction and carbon tetrachloride-induced cirrhosis. Int Braz J Urol. 2006; 32(1), 9499. doi: 10.1590/S1677-55382006000100016.CrossRefGoogle ScholarPubMed
Borland, K, Mita, M, Oppenheimer, CL, et al.The actions of insulin-like growth factors I and II on cultured Leydig cells. Endocrinology. 1984; 114(1), 240246. doi: 10.1210/endo-114-1-240.CrossRefGoogle Scholar
Jiang, X, Yin, S, Fan, S, et al.Npat-dependent programmed Sertoli cell proliferation is indispensable for testis cord development and germ cell mitotic arrest. FASEB J. 2019; 33(8), 90759086. doi: 10.1096/fj.201802289RR.CrossRefGoogle ScholarPubMed
Moore, A, Morris, ID.The involvement of insulin-like growth factor-I in local control of steroidogenesis and DNA synthesis of Leydig and non-Leydig cells in the rat testicular interstitium. J Endocrinol. 1993; 138(1), 107114. http://www.ncbi.nlm.nih.gov/pubmed/7531750.CrossRefGoogle ScholarPubMed
Sloboda, DM, Howie, GJ, Pleasants, A, Gluckman, PD, Vickers, MH. Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. Belizan JM, ed. PLoS One. 2009; 4(8), e6744. doi: 10.1371/journal.pone.0006744.CrossRefGoogle ScholarPubMed
Chadio, S, Kotsampasi, B.The role of early life nutrition in programming of reproductive function. J Dev Orig Health Dis. 2014; 5(1), 215. doi: 10.1017/S204017441300038X.CrossRefGoogle ScholarPubMed
Chadio, S, Katsafadou, A, Kotsampasi, B, et al.Effects of maternal undernutrition during late gestation and/or lactation on colostrum synthesis and immunological parameters in the offspring. Reprod Fertil Dev. 2016; 28(3). doi: 10.1071/RD14147.CrossRefGoogle ScholarPubMed
Maule, M, Malavassi, JL, Richiardi, L.Age at puberty and risk of testicular cancer: a meta-analysis. Int J Androl. 2012; 35(6), 828834. doi: 10.1111/j.1365-2605.2012.01286.x.CrossRefGoogle ScholarPubMed
Monteiro, G, Luz, A, Castro, D, Paula, A, Loss, ES.Biochimica et Biophysica Acta Insulin and IGF-I actions on IGF-I receptor in seminiferous tubules from immature rats. BBA - Biomembr. 2014; 1838(5), 13321337. doi: 10.1016/j.bbamem.2014.02.002.Google Scholar
Sharpe, R, McKinnell, C, Kivlin, C, Fisher, J.Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003; 125, 769784. http://www.reproduction-online.org/content/125/6/769.short (Accessed April 15, 2013).CrossRefGoogle ScholarPubMed
Ciaputa, R, Nowak, M, Kiełbowicz, M, Antończyk, A, Błasiak, K, Madej, JA. Seminoma, sertolioma, and leydigoma in dogs: clinical and morphological correlations. Bull Vet Inst Pulawy. 2012; 56(3), 361367. doi: 10.2478/v10213-012-0063-8.CrossRefGoogle Scholar
Griffeth, RJ, Bianda, V, Nef, S.The emerging role of insulin-like growth factors in testis development and function. Basic Clin Androl. 2014; 24(1), 12. doi: 10.1186/2051-4190-24-12.CrossRefGoogle ScholarPubMed
Friedrich, N, Thuesen, B, Jrøgensen, T, et al.The association between IGF-I and insulin resistance: a general population study in Danish adults. Diabetes Care. 2012; 35(4), 768773. doi: 10.2337/dc11-1833.CrossRefGoogle ScholarPubMed
Belfiore, A, Frasca, F, Pandini, G, Sciacca, L, Vigneri, R.Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009. doi: 10.1210/er.2008-0047.CrossRefGoogle ScholarPubMed