Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-wb78c Total loading time: 0.6 Render date: 2021-06-23T12:19:10.716Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Increased maternal BMI is associated with infant wheezing in early life: a prospective cohort study

Published online by Cambridge University Press:  25 June 2014

A. de Vries
Affiliation:
Endocrinology Unit, University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
R. M. Reynolds
Affiliation:
Endocrinology Unit, University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
J. R. Seckl
Affiliation:
Endocrinology Unit, University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
M. van der Wal
Affiliation:
Department of Epidemiology, Documentation and Health Promotion, Public Health Service of Amsterdam, the Netherlands
G. J. Bonsel
Affiliation:
Department of Obstetrics and Prenatal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
T. G. M. Vrijkotte
Affiliation:
Department of Public Health, Academic Medical Center, Amsterdam, the Netherlands
Corresponding
E-mail address:

Abstract

Rates of obesity are increasing in women of child bearing age with negative impacts on maternal and offspring health. Emerging evidence suggests in utero origins of respiratory health in offspring of obese mothers but mechanisms are unknown. Changes in maternal cortisol levels are one potential factor as cortisol levels are altered in obesity and cortisol is separately implicated in development of offspring wheeze. We aimed to assess whether increased pre-pregnancy maternal body mass index (BMI) was associated with offspring early life wheezing, and whether this was mediated by altered cortisol levels in the mother. In a prospective community-based cohort (Amsterdam Born Children and their Development cohort), women completed questionnaires during pregnancy and at 3–5 months post-delivery regarding self-history of asthma and atopy, and of wheezing of their offspring (n=4860). Pre-pregnancy BMI was recorded and serum total cortisol levels were measured in a subset of women (n=2227) at their first antenatal visit. A total of 20.2% (n=984) women were overweight or obese and 10.3% reported wheezing in their offspring. Maternal BMI was associated with offspring wheezing (1 unit (kg/m2) increase, OR: 1.03; 95% CI: 1.00–1.05), after correction for confounders. Although maternal cortisol levels were lower in overweight mothers and those with a history of asthma, maternal cortisol levels did not mediate the increased offspring wheezing. Pre-pregnancy BMI impacts on baby wheezing, which is not mediated by lower cortisol levels. As the prevalence of obesity in women of child-bearing age is increasing, further studies are needed to investigate modifiable maternal factors to avoid risk of wheezing in young children.

Type
Original Article
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Guelinckx, I, Devlieger, R, Beckers, K, Vansant, G. Maternal obesity: pregnancy complications, gestational weight gain and nutrition. Obes Rev. 2008; 9, 140150.CrossRefGoogle ScholarPubMed
2.Gale, CR, Javaid, MK, Robinson, SM, et al. Maternal size in pregnancy and body composition in children. J Clin Endocrinol Metab. 2007; 92, 39043911.CrossRefGoogle ScholarPubMed
3.Lawlor, DA, Smith, GD, O’Callaghan, M. Epidemiologic evidence for the fetal overnutrition hypothesis: findings from the mater-university study of pregnancy and its outcomes. Am J Epidemiol. 2007; 165, 418424.CrossRefGoogle ScholarPubMed
4.Sewell, MF, Huston-Presley, L, Super, DM, Catalano, P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstetr Gynecol. 2006; 195, 11001103.CrossRefGoogle Scholar
5.Rizwan, S, Reid, J, Kelly, Y, et al. Trends in childhood and parental asthma prevalence in Merseyside, 1991–1998. J Public Health (Oxf). 2004; 26, 337342.CrossRefGoogle ScholarPubMed
6.Epstein, LH, Wu, YW, Paluch, RA, Cerny, FJ, Dorn, JP. Asthma and maternal body mass index are related to pediatric body mass index and obesity: results from the Third National Health and Nutrition Examination Survey. Obes Res. 2000; 8, 575581.CrossRefGoogle ScholarPubMed
7.Sennhauser, FH, Braun-Fahrlander, C, Wildhaber, JH. The burden of asthma in children: a European perspective. Paediatr Respir Rev. 2005; 6, 27.CrossRefGoogle ScholarPubMed
8.Pasquali, R, Vicennati, V, Cacciari, M, Pagotto, U. The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann N Y Acad Sci. 2006; 1083, 111128.CrossRefGoogle ScholarPubMed
9.Strain, GW, Zumoff, B, Strain, JJ, Levin, J, Fukushima, DK. Cortisol production in obesity. Metabolism. 1980; 29, 980985.CrossRefGoogle ScholarPubMed
10.Staab, CA, Maser, E. 11beta-Hydroxysteroid dehydrogenase type 1 is an important regulator at the interface of obesity and inflammation. J Steroid Biochem Mol Biol. 2010; 119, 5672.CrossRefGoogle ScholarPubMed
11.Benson, S, Arck, PC, Tan, S, et al. Effects of obesity on neuroendocrine, cardiovascular, and immune cell responses to acute psychosocial stress in premenopausal women. Psychoneuroendocrinology. 2009; 34, 181189.CrossRefGoogle ScholarPubMed
12.Seckl, JR. Prenatal glucocorticoids and long-term programming. Eur J Endocrinol. 2004; 151(Suppl. 3), U49U62.CrossRefGoogle ScholarPubMed
13.De Vries, A, Holmes, MC, Heijnis, A, et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest. 2007; 117, 10581067.CrossRefGoogle ScholarPubMed
14.Benediktsson, R, Lindsay, RS, Noble, J, Seckl, JR, Edwards, CR. Glucocorticoid exposure in utero: new model for adult hypertension. Lancet. 1993; 341, 339341.CrossRefGoogle ScholarPubMed
15.Goedhart, G, Vrijkotte, TG, Roseboom, TJ, et al. Maternal cortisol and offspring birthweight: results from a large prospective cohort study. Psychoneuroendocrinology. 2010; 35, 644652.CrossRefGoogle ScholarPubMed
16.Phillips, DI, Walker, BR, Reynolds, RM, et al. Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension. 2000; 35, 13011306.CrossRefGoogle ScholarPubMed
17.O’Reilly, JR, Riley, SC, Critchley, HO, et al. Reduced glucocorticoid action in obese pregnancy is associated with increased birthweight. Endocrine Abstracts. 2013; 31, p. 143.Google Scholar
18.Buske-Kirschbaum, A, von, AK, Krieger, S, et al. Blunted cortisol responses to psychosocial stress in asthmatic children: a general feature of atopic disease? Psychosom Med. 2003; 65, 806810.CrossRefGoogle ScholarPubMed
19.Daniltchenko, M, de Vries, A, Tobin, DJ, et alAllergic dermatitis is aggravated by stress and alters the hypothalamic stress-response in mice. J Inves Dermatolo. 2005; 124.Google Scholar
20.Heim, C, Ehlert, U, Hellhammer, DH. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology. 2000; 25, 135.CrossRefGoogle ScholarPubMed
21.Priftis, KN, Papadimitriou, A, Nicolaidou, P, Chrousos, GP. Dysregulation of the stress response in asthmatic children. Allergy. 2009; 64, 1831.CrossRefGoogle ScholarPubMed
22.Buske-Kirschbaum, A, Fischbach, S, Rauh, W, Hanker, J, Hellhammer, D. Increased responsiveness of the hypothalamus-pituitary-adrenal (HPA) axis to stress in newborns with atopic disposition. Psychoneuroendocrinology. 2004; 29, 705711.CrossRefGoogle ScholarPubMed
23.Haberg, SE, Stigum, H, London, SJ, Nystad, W, Nafstad, P. Maternal obesity in pregnancy and respiratory health in early childhood. Paediatr Perinat Epidemiol. 2009; 23, 352362.CrossRefGoogle ScholarPubMed
24.Harpsoe, MC, Basit, S, Bager, P, et al. Maternal obesity, gestational weight gain, and risk of asthma and atopic disease in offspring: a study within the Danish National Birth Cohort. J Allergy Clin Immunol. 2013; 131, 10331040.CrossRefGoogle ScholarPubMed
25.Kumar, R, Story, RE, Pongracic, JA, et al. Maternal pre-pregnancy obesity and recurrent wheezing in early childhood. Pediatr Allergy Immunol Pulmonol. 2010; 23, 183190.CrossRefGoogle ScholarPubMed
26.Patel, SP, Rodriguez, A, Little, MP, et al. Associations between pre-pregnancy obesity and asthma symptoms in adolescents. J Epidemiol Community Health. 2012; 66, 809814.CrossRefGoogle ScholarPubMed
27.Leermakers, ET, Sonnenschein-van der Voort, AM, Gaillard, R, et al. Maternal weight, gestational weight gain and preschool wheezing: the Generation R Study. Eur Respir J. 2013; 42, 12341243.CrossRefGoogle ScholarPubMed
28.Reichman, NE, Nepomnyaschy, L. Maternal pre-pregnancy obesity and diagnosis of asthma in offspring at age 3 years. Matern Child Health J. 2007; 12, 725733.Google Scholar
29.Scholtens, S, Wijga, AH, Brunekreef, B, et al. Maternal overweight before pregnancy and asthma in offspring followed for 8 years. Int J Obes (Lond). 2010; 34, 606613.CrossRefGoogle ScholarPubMed
30.Lowe, AJ, Ekeus, C, Braback, L, et al. Impact of maternal obesity on inhaled corticosteroid use in childhood: a registry based analysis of first born children and a sibling pair analysis. PLoS One. 2013; 8, e67368.CrossRefGoogle Scholar
31.Devereux, G, Litonjua, AA, Turner, SW, et al. Maternal vitamin D intake during pregnancy and early childhood wheezing. Am J Clin Nutr. 2007; 85, 853859.CrossRefGoogle ScholarPubMed
32.Nagel, G, Buchele, G, Weinmayr, G, et al. Effect of breastfeeding on asthma, lung function and bronchial hyperreactivity in ISAAC Phase II. Eur Respir J. 2009; 33, 9931002.CrossRefGoogle ScholarPubMed
33.Reynolds, RM, Walker, BR, Phillips, DI, et al. Programming of hypertension: associations of plasma aldosterone in adult men and women with birthweight, cortisol, and blood pressure. Hypertension. 2009; 53, 932936.CrossRefGoogle ScholarPubMed
34.van Eijsden, M, Vrijkotte, TG, Gemke, RJ, van der Wal, MF. Cohort profile: The Amsterdam Born Children and their Development (ABCD) Study. Int J Epidemiol. 2011; 40, 11761185.CrossRefGoogle ScholarPubMed
35.Tromp, M, van, EM, Ravelli, AC, Bonsel, GJ. Anonymous non-response analysis in the ABCD cohort study enabled by probabilistic record linkage. Paediatr Perinat Epidemiol. 2009; 23, 264272.CrossRefGoogle ScholarPubMed
36.Just, J, Belfar, S, Wanin, S, et al. Impact of innate and environmental factors on wheezing persistence during childhood. J Asthma. 2010; 47, 412416.CrossRefGoogle ScholarPubMed
37.Jedrychowski, W, Perera, FP, Maugeri, U, et al. Early wheezing phenotypes and severity of respiratory illness in very early childhood: study on intrauterine exposure to fine particle matter. Environ Int. 2009; 35, 877884.CrossRefGoogle ScholarPubMed
38.Koopman, LP, Wijga, A, Smit, HA, et al. Early respiratory and skin symptoms in relation to ethnic background: the importance of socioeconomic status; the PIAMA study. Arch Dis Child. 2002; 87, 482488.CrossRefGoogle ScholarPubMed
39.Kurukulaaratchy, RJ, Matthews, S, Arshad, SH. Does environment mediate earlier onset of the persistent childhood asthma phenotype? Pediatrics. 2004; 113, 345350.CrossRefGoogle ScholarPubMed
40.Franklin, KA, Holmgren, PA, Jonsson, F, et al. Snoring, pregnancy-induced hypertension, and growth retardation of the fetus. Chest. 2000; 117, 137141.CrossRefGoogle ScholarPubMed
41.Mallol, J, Garcia-Marcos, L, Sole, D, Brand, P. International prevalence of recurrent wheezing during the first year of life: variability, treatment patterns and use of health resources. Thorax. 2010; 65, 10041009.CrossRefGoogle ScholarPubMed
42.Chong Neto, HJ, Rosario, N, la Bianca, AC, Sole, D, Mallol, J. Validation of a questionnaire for epidemiologic studies of wheezing in infants. Pediatr Allergy Immunol. 2007; 18, 8687.CrossRefGoogle ScholarPubMed
43.Mallol, J, Garcia-Marcos, L, Aguirre, V, et al. The International Study of Wheezing in Infants: questionnaire validation. Int Arch Allergy Immunol. 2007; 144, 4450.CrossRefGoogle ScholarPubMed
44.Dekkers, JC, van Wier, MF, Hendriksen, IJ, Twisk, JW, van, MW. Accuracy of self-reported body weight, height and waist circumference in a Dutch overweight working population. BMC Med Res Methodol. 2008; 8, 69.CrossRefGoogle Scholar
45.Mesman, I, Roseboom, TJ, Bonsel, GJ, et al. Maternal pre-pregnancy body mass index explains infant's weight and BMI at 14 months: results from a multi-ethnic birth cohort study. Arch Dis Child. 2009.CrossRefGoogle ScholarPubMed
46.Harley, KG, Macher, JM, Lipsett, M, et al. Fungi and pollen exposure in the first months of life and risk of early childhood wheezing. Thorax. 2009; 64, 353358.CrossRefGoogle ScholarPubMed
47.Baron, RM, Kenny, DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986; 51, 11731182.CrossRefGoogle ScholarPubMed
48.Kusunoki, T, Morimoto, T, Nishikomori, R, et al. Obesity and the prevalence of allergic diseases in schoolchildren Pediatr Allergy Immunol. 2008; 19, 527534.CrossRefGoogle ScholarPubMed
49.Carroll, KN, Wu, P, Gebretsadik, T, et al. Season of infant bronchiolitis and estimates of subsequent risk and burden of early childhood asthma. J Allergy Clin Immunol. 2009; 123, 964966.CrossRefGoogle ScholarPubMed
50.Yeh, J, Shelton, JA. Increasing prepregnancy body mass index: analysis of trends and contributing variables. Am J Obstetr Gynecol. 2005; 193, 19941998.CrossRefGoogle ScholarPubMed
51.Duncan, JM, Sears, MR. Breastfeeding and allergies: time for a change in paradigm? Curr Opin Allergy Clin Immunol. 2008; 8, 398405.CrossRefGoogle ScholarPubMed
52.Anderson, J, Malley, K, Snell, R. Is 6 months still the best for exclusive breastfeeding and introduction of solids? A literature review with consideration to the risk of the development of allergies. Breastfeed Rev. 2009; 17, 2331.Google ScholarPubMed
53.Tooley, KL, El-Merhibi, A, Cummins, AG, et al. Maternal milk, but not formula, regulates the immune response to beta-lactoglobulin in allergy-prone rat pups. J Nutr. 2009; 139, 21452151.CrossRefGoogle Scholar
54.Polte, T, Hansen, G. Maternal tolerance achieved during pregnancy is transferred to the offspring via breast milk and persistently protects the offspring from allergic asthma. Clin Exp Allergy. 2008; 38, 19501958.CrossRefGoogle ScholarPubMed
55.Wamboldt, MZ, Laudenslager, M, Wamboldt, FS, Kelsay, K, Hewitt, J. Adolescents with atopic disorders have an attenuated cortisol response to laboratory stress. J Allergy Clin Immunol. 2003; 111, 509514.CrossRefGoogle ScholarPubMed
56.Buske-Kirschbaum, A, Jobst, S, Wustmans, A, et al. Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. Psychosom Med. 1997; 59, 419426.CrossRefGoogle ScholarPubMed
57.Lumeng, CN, Bodzin, JL, Saltiel, AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007; 117, 175184.CrossRefGoogle ScholarPubMed
58.Lumeng, CN, Deyoung, SM, Bodzin, JL, Saltiel, AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007; 56, 1623.CrossRefGoogle ScholarPubMed
59.Ramsay, JE, Ferrell, WR, Crawford, L, et al. Maternal obesity is associated with dysregulation of metabolic, vascular, and inflammatory pathways. J Clin Endocrinol Metab. 2002; 87, 42314237.CrossRefGoogle ScholarPubMed
60.Challier, JC, Basu, S, Bintein, T, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008; 29, 274281.CrossRefGoogle ScholarPubMed
61.Rothenbacher, D, Weyermann, M, Fantuzzi, G, Brenner, H. Adipokines in cord blood and risk of wheezing disorders within the first two years of life. Clin Expl Allergy. 2007; 37, 11431149.CrossRefGoogle ScholarPubMed
62.Scirica, CV, Gold, DR, Ryan, L, et al. Predictors of cord blood IgE levels in children at risk for asthma and atopy. J Allergy Clin Immunol. 2007; 119, 8188.CrossRefGoogle ScholarPubMed
63.Ly, NP, Rifas-Shiman, SL, Litonjua, AA, et al. Cord blood cytokines and acute lower respiratory illnesses in the first year of life. Pediatrics. 2007; 119, e171e178.CrossRefGoogle ScholarPubMed
64.Delgado, J, Barranco, P, Quirce, S. Obesity and asthma. J Investig Allergol Clin Immunol. 2008; 18, 420425.Google ScholarPubMed
65.Clark, JM, Hulme, E, Devendrakumar, V, et al. Effect of maternal asthma on birthweight and neonatal outcome in a British inner-city population. Paediatr Perinat Epidemiol. 2007; 21, 154162.CrossRefGoogle Scholar
66.Lim, RH, Kobzik, L, Dahl, M. Risk for asthma in offspring of asthmatic mothers versus fathers: a meta-analysis. PLoS One. 2010; 5, e10134.CrossRefGoogle ScholarPubMed
67.Mallol, J, Garcia-Marcos, L, Aguirre, V, et al. The International Study of Wheezing in Infants: questionnaire validation. Int Arch Allergy Immunol. 2007; 144, 4450.CrossRefGoogle ScholarPubMed
68.Chong Neto, HJ, Rosario, N, la Bianca, AC, Sole, D, Mallol, J. Validation of a questionnaire for epidemiologic studies of wheezing in infants. Pediatr Allergy Immunol. 2007; 18, 8687.CrossRefGoogle ScholarPubMed
69.Mallol, J, Garcia-Marcos, L, Sole, D, Brand, P. International prevalence of recurrent wheezing during the first year of life: variability, treatment patterns and use of health resources. Thorax. 2010; 65, 10041009.CrossRefGoogle ScholarPubMed
70.Willers, SM, Devereux, G, Craig, LC, et al. Maternal food consumption during pregnancy and asthma, respiratory and atopic symptoms in 5-year-old children. Thorax. 2007; 62, 773779.CrossRefGoogle ScholarPubMed
71.Stommel, M, Schoenborn, CA. Accuracy and usefulness of BMI measures based on self-reported weight and height: findings from the NHANES & NHIS 2001–2006. BMC Public Health. 2009; 9, 421.CrossRefGoogle ScholarPubMed
72.Niedhammer, I, Bugel, I, Bonenfant, S, Goldberg, M, Leclerc, A. Validity of self-reported weight and height in the French GAZEL cohort. Int J Obes Relat Metab Disord. 2000; 24, 11111118.CrossRefGoogle ScholarPubMed
73.Engstrom, JL, Paterson, SA, Doherty, A, Trabulsi, M, Speer, KL. Accuracy of self-reported height and weight in women: an integrative review of the literature. J Midwifery Womens Health. 2003; 48, 338345.CrossRefGoogle ScholarPubMed
74.Krul, AJ, Daanen, HA, Choi, H. Self-reported and measured weight, height and body mass index (BMI) in Italy, the Netherlands and North America. Eur J Public Health. 2011; 21, 414419.CrossRefGoogle ScholarPubMed
75.Dekkers, JC, van Wier, MF, Hendriksen, IJ, Twisk, JW, van, MW. Accuracy of self-reported body weight, height and waist circumference in a Dutch overweight working population. BMC Med Res Methodol. 2008; 8, 69.CrossRefGoogle Scholar
76.Callaway, LK, O’Callaghan, MJ, McIntyre, HD. Barriers to addressing overweight and obesity before conception. Med J Aust. 2009; 191, 425428.Google ScholarPubMed
77.Maiorino, MI, Schisano, B, Di, PC, et al. Interleukin-20 circulating levels in obese women: effect of weight loss. Nutr Metab Cardiovasc Dis. 2009; 20, 180185.CrossRefGoogle ScholarPubMed
78.Mai, XM, Chen, Y, Krewski, D. Does leptin play a role in obesity-asthma relationship? Pediatr Allergy Immunol. 2009; 20, 207212.CrossRefGoogle ScholarPubMed
12
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Increased maternal BMI is associated with infant wheezing in early life: a prospective cohort study
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Increased maternal BMI is associated with infant wheezing in early life: a prospective cohort study
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Increased maternal BMI is associated with infant wheezing in early life: a prospective cohort study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *