Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-13T18:37:34.525Z Has data issue: false hasContentIssue false

The tertiary phase of rennin action on αs- and β-caseins

Published online by Cambridge University Press:  01 June 2009

A. M. El-Negoumy
Affiliation:
Agricultural Products Utilization Laboratory, Biochemistry Section, Department of Animal and Range Sciences, Montana State University, Bozeman, U.S.A.

Summary

Casein, whole αs-casein and β-casein were incubated for 3 and 14 h with crystalline rennin, at pH 6·60 and 36 °C, both in phosphate buffer and in milk dialysate. Products obtained from both systems, comprising 30–83% calciumsensitive (Cas) components, gave similar patterns on starch gel electrophoresis. Whole casein and whole αs-casein were not so soluble in milk dialysate as in phosphate buffer. No significant differences in composition were observed between the Cas and the calcium-insensitive (Ca1) products from the same source.

The αs1-component of the Cas product from rennin-treated whole αs-casein had faster gel mobility in comparison to the αs1-component in the Cas product from untreated whole αs-casein. Also, αs1-casein yielded one faster-moving degradation product, while αs2,3,4 appeared unaltered after 14h. The Cas product of rennintreated β-casein also had faster mobility than untreated β-casein and yielded one faster degradation product and several minor ones of slower mobility. Arginine was the only N-terminal amino acid found in the Cas product of both rennin-treated and untreated αs - and β-caseins. The arginine content increased from 3·48 and 4·98 moles/105g to 5·12 and 6·38 moles/105g in the Cas products from rennin-treated β-and αs-caseins, respectively.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alais, C., Mocquot, G., Nitschmann, H. & Zahler, P. (1953). Helv. chim. Acta 36, 1955.Google Scholar
Block, R. J. (1960). In A Laboratory Manual of Analytical Methods of Protein Chemistry (Including Polypeptides) 2, 1516 (Eds Alexander, P. and Block, R. J.). New York: Pergamon Press.Google Scholar
Cerbulis, J., Custer, J. H. & Zittle, C. A. (1959). Archs Biochem. Biophys. 84, 517.Google Scholar
Cerbulis, J., Custer, J. H. & Zittle, C. A. (1960). J. Dairy Sci. 43, 1725.CrossRefGoogle Scholar
Cherbuliez, E. & Baudet, P. (1950). Helv. chim. Acta 33, 1673.Google Scholar
El-Negoumy, A. M. (1966). J. Dairy Sci. 49, 1461.CrossRefGoogle Scholar
El-Negoumy, A. M. (1968). J. Dairy Sci. 51, 1013.Google Scholar
Fraenkel-Conrat, H., Harris, J. F. & Levy, A. L. (1955). Meth. biochem. Analysis 2, 359.Google Scholar
Garnier, J., Ribadeau-, B. & Mocquot, G. (1964). J. Dairy Res. 31, 131.Google Scholar
Hagberg, E. C. & Sullivan, R. A. (1953). J. Dairy Sci. 36, 569.Google Scholar
Kalan, E. B., Thompson, M. P., Greenberg, R. & Pepper, L. (1965). J. Dairy Sci. 48, 884.CrossRefGoogle Scholar
Lahav, B. & Babad, Y. (1964). J. Dairy Res. 31, 31.CrossRefGoogle Scholar
Levy, A. L. (1954). Nature, Lond. 174, 126.Google Scholar
Lindqvist, B. (1963). Dairy Sci. Abstr. 25, 299.Google Scholar
Lindqvist, B. & Storgårds, T. (1959). Acta chem. scand. 13, 1839.Google Scholar
Lindqvist, B. & Storgårds, T. (1960). Acta chem. scand. 14, 757.Google Scholar
Lindqvist, B. & Storgårds, T. (1962). 16th Int. Dairy Congr., Copenhagen B, 665.Google Scholar
McMeekin, T. L., Hipp, N. J. & Groves, M. L. (1959). Archs Biochem. Biophys. 83, 35.CrossRefGoogle Scholar
Manson, W. (1961). Archs Biochem. Biophys. 95, 336.Google Scholar
Masayoshi, O. (1956). 14th Int. Dairy Congr., Rome 2 (2), 379.Google Scholar
Nitschmann, Hs. & Keller, W. (1955). Helv. chim. Acta 38, 942.Google Scholar
Nitschmann, Hs. & Lehmann, W. (1947). Experientia 3, 153.Google Scholar
Ribadeau Dumas, B. & Alais, C. (1961). Bull. Soc. Chim. biol. 43, 377.Google Scholar
Rose, D., Davies, D. T. & Yaguchi, M. (1969). J. Dairy Sci. 52, 8.CrossRefGoogle Scholar
Schmidt, D. G. & Payens, T. A. J. (1963). Biochim. biophys. Acta 78, 492.Google Scholar
Tsugo, T. & Yamauchi, K. (1956). 14th Int. Dairy Congr., Rome 2 (2), 588.Google Scholar
Warren, L. (1959). J. biol. Chem. 234, 1971.CrossRefGoogle Scholar
Yaguchi, M., Davies, D. T. & Kim, Y. K. (1968). J. Dairy Sci. 51, 473.CrossRefGoogle Scholar