Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T15:30:59.606Z Has data issue: false hasContentIssue false

Synthetic peptide and ester substrates for rennin

Published online by Cambridge University Press:  01 June 2009

R. D. Hill
Affiliation:
Division of Dairy Research, C.S.I.R.O., Melbourne, Australia

Summary

Rennin hydrolysed the phe-met bond in the peptide H-ser-leu-phe-met-ala-OMe (i.e. methyl ester), the amino acid sequence of which is similar to that around the phe-met bond attacked by rennin in κ-casein. Rennin did not attack other peptides from this sequence not containing serine, and it is suggested that, in both κ-casein and the pentapeptide, the enzymic attack is accelerated by the nearby serine side chain. Rennin also hydrolysed sulphite esters such as phenyl sulphite ester and some N-substituted imidazole compounds such as benzoyl imidazole. Phenyl sulphite esters may be suitable substrate for assaying the activity of preparations of rennin.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berridge, N. J. (1962). Analyst, Lond. 77, 67.Google Scholar
Boyer, J. H. (1952). J. Am. chem. Soc. 74, 6274.CrossRefGoogle Scholar
Brenner, M., Niederwieser, A. & Pataki, G. (1962). In Dünnschicht-Chromatographie, p. 403 (ed. Stahl, E.). Berlin: Springer-Verlag.Google Scholar
Carré, P. & Libermann, D. (1932). C.r. hebd. Séanc. Acad. Sci., Paris 195, 799.Google Scholar
Delfour, A., JollÉs, J., Alais, C. & JollÉs, P. (1965). Biochem. biophys. Res. Commun. 19, 452.CrossRefGoogle Scholar
Fish, J. C. (1957). Nature, Lond. 180, 345.CrossRefGoogle Scholar
Foltmann, B. (1966). C.r. Trav. Lab. Carlsberg 35, no. 8.Google Scholar
Fontana, A., Marchiori, F., Moroder, L. & Scoffone, E. (1966). Tetrahedron Lett. p. 2985.Google Scholar
Guilbault, G. G. & Sadar, M. H. (1968). Analyt. Lett. 1, 551.CrossRefGoogle Scholar
Harmeyer, J., Sallmann, H. P. & Ayoub, L. (1968). J. Chromat. 32, 258.CrossRefGoogle Scholar
Hill, R. D. (1968). Biochem. biophys. Res. Commun. 33, 659.CrossRefGoogle Scholar
Hill, R. D. & Laing, R. R. (1967). Biochim. biophys. Acta 132, 188.CrossRefGoogle Scholar
Jollès, P., Alais, C. & JollÉs, J. (1962). Archs Biochem. Biophys. 98, 56.CrossRefGoogle Scholar
Jollès, J., Alais, C. & Jollès, P. (1968). Biochim. biophys. Acta 168, 591.CrossRefGoogle Scholar
Lineweaver, H. & Burk, D. (1934). J. Am. chem. Soc. 56, 658.CrossRefGoogle Scholar
Reid, T. W. & Fahrney, D. (1967). J. Am. chem. Soc. 89, 3941.CrossRefGoogle Scholar
Stepanov, V. M., Lobareva, L. S. & Mal'tsev, N. I. (1968). Biochim. biophys. Acta 151, 719.CrossRefGoogle Scholar
Zervas, L., Borovas, D. & Gazis, E. (1963). J. Am. chem. Soc. 85, 3660.CrossRefGoogle Scholar