Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T12:32:15.524Z Has data issue: false hasContentIssue false

Properties of aseptically-packed UHT milk: casein modification during storage and studies with model systems

Published online by Cambridge University Press:  01 June 2009

A. T. Andrews
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
G. C. Cheeseman
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT

Summary

Storage of aseptically packed UHT milk produced changes in the electrophoretic pattern of the milk caseins when the milk was stored at ambient or higher temperatures. Lower temperature storage at 4°C did not give rise to these changes.

The alterations in electrophoretic properties of the caseins appeared to be due to the action of carbonyl compounds, produced by a Maillard type of reaction, which led to changes in the charge of the protein together with some degree of polymerization. These conclusions have been drawn from results obtained on model systems of casein-lactose subjected to various heat treatments, and on casein and milk treated with acetaldehyde.

Changes in the sensitivity to calcium ions of individual caseins, whole casein and milk that had been subjected to various heat treatments or to treatment with acetaldehyde showed that all these different treatments gave rise to modified casein which, in general, became less sensitive to calcium. κ-Casein when treated alone rapidly lost its ability to protect αs1-casein from precipitation by calcium ions, while αs1-casein treated alone only gradually became more soluble in the presence of calcium. Thus, on treating whole casein there was evidence for a stability minimum when the protective ability of the κ-casein has been destroyed without a compensating gain in the stability of the αs1-casein.

The importance of these changes in relation to the stability of UHT milks has not yet been elucidated but the results indicate that cross linking between protein chains and changes in calcium sensitivity occur during long-term storage.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alais, C. & Jollès, P. (1961). Biochim. biophys. Acta 51, 315.CrossRefGoogle Scholar
Alais, C., Kiger, N. & Jollès, P. (1967). J. Dairy Sci. 50, 1738.CrossRefGoogle Scholar
Albonico, F., Prati, F., Resmini, P. & Zanini, A. (1966). Latte 40, 411.Google Scholar
Armstrong, C. E., Mackinlay, A. G., Hill, R. J. & Wake, R. G. (1967). Biochim. biophys. Acta 140, 123.CrossRefGoogle Scholar
Aschaffenburg, R. (1963). J. Dairy Res. 30, 259.CrossRefGoogle Scholar
Aschaffenburg, R. & Michalak, W. (1968). J. Dairy Sci. 51, 1849.CrossRefGoogle Scholar
Burton, H. (1969). Dairy Sci. Abstr. 31, 287.Google Scholar
Ferretti, A., Flanagan, V. P. & Ruth, J. M. (1970). J. agric. Fd Chem. 18, 13.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Fraenkel-Conrat, H. & Mecham, D. K. (1949). J. biol. Chem. 177, 477.CrossRefGoogle Scholar
Fraenkel-Conrat, H. & Olcott, H. S. (1948 a). J. Am. chem. Soc. 70, 2673.CrossRefGoogle Scholar
Fraenkel-Conrat, H. S.Olcott, H. (1948 b). J. biol. Chem. 174, 827.CrossRefGoogle Scholar
French, D. & Edsall, J. T. (1945). Adv. Protein Chem. 2, 277.CrossRefGoogle Scholar
Henry, K. M., Kon, S. K., Lea, C. H. & White, J. C. D. (1948). J. Dairy Res. 15, 292.CrossRefGoogle Scholar
Hipp, N. J., Groves, M. L., Custer, J. H. & McMeekin, T. L. (1952). J. Dairy Sci. 35, 272.CrossRefGoogle Scholar
Kirk, J. K., Hedrick, T. I. & Stine, C. M. (1967). J. Dairy Sci. 50, 951.Google Scholar
Lea, C. H. (1948). J. Dairy Res. 15, 364.CrossRefGoogle Scholar
Lea, C. H. & Hannan, R. S. (1950 a). Nature, Lond. 165, 438.CrossRefGoogle Scholar
Lea, C. H. & Hannan, R. S. (1950 b). Biochim. biophys. Acta 4, 518.CrossRefGoogle Scholar
Lea, C. H. & Hannan, R. S. (1950 c). Biochim. biophys. Acta 5, 433.CrossRefGoogle Scholar
Maillard, L. C. (1912). C. r. hebd. Séanc. Acad. Sci., Paris 154, 66.Google Scholar
Mohammad, A., Fraenkel-conrat, H. & Olcott, H. S. (1949). Archs Biochem. Biophys. 24, 157.Google Scholar
Mohammad, A., Olcott, H. S. & Fraenkel-Conrat, H. (1949). Archs Biochem. Biophys. 24, 270.Google Scholar
Morr, C. V. (1969). J. Dairy Sci. 52, 1174.CrossRefGoogle Scholar
Neelin, J. M., Rose, D. & Tessier, H. (1962). J. Dairy Sci. 45, 153.CrossRefGoogle Scholar
Parks, O. W. & Patton, S. (1961). J. Dairy Sci. 44, 1.CrossRefGoogle Scholar
Patel, T. D., Calbert, H. E., Morgan, D. G. & Strong, F. M. (1962). J. Dairy Sci. 45, 601.CrossRefGoogle Scholar
Reynolds, T. M. (1965). Adv. Fd Res. 14, 167.CrossRefGoogle Scholar
Scanlan, R. A., Lindsay, R. C., Libbey, L. M. & Day, E. A. (1968). J. Dairy Sci. 51, 1001.CrossRefGoogle Scholar
Storry, J. E. & Tuckley, B. (1967). Lipids 2, 501.CrossRefGoogle ScholarPubMed
Swartling, P. (1967). Tech. Publs Aust. Soc. Dairy Technol. 19, 18.Google Scholar
Thompson, M. P. (1966). J. Dairy Sci. 49, 792.CrossRefGoogle Scholar
Zittle, C. A. (1961). J. Dairy Sci. 44, 2101.CrossRefGoogle Scholar
Zittle, C. A. & Custer, J. H. (1963). J. Dairy Sci. 46, 1183.CrossRefGoogle Scholar