Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T19:22:45.083Z Has data issue: false hasContentIssue false

The primary phase of rennin action in heat-sterilized milk

Published online by Cambridge University Press:  01 June 2009

E. J. Hindle
Affiliation:
School of Biological Sciences, University of Bradford, Bradford 7
J. V. Wheelock
Affiliation:
School of Biological Sciences, University of Bradford, Bradford 7

Summary

The action of rennin in milk subjected to the ultra-high-temperature heat sterilization process has been studied. The primary phase of rennin action, as determined by the release of peptides soluble in trichloroacetic acid, was partially inhibited as a result of the heat treatment. This was largely due to a reduction in the release of non-carbohydrate-containing peptides from κ-casein. It is suggested that when whole milk is heated the formation of a complex between β-lactoglobulin and κ-casein proceeds more readily with the species of κ-casein which lacks carbohydrate. Evidence is presented which shows that there may be more than one type of carbohydrate moiety attached to κ-casein.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alais, C. & Jollés, P. (1961). Biochim. biophys. Acta 51, 315.CrossRefGoogle Scholar
Cherbuliez, E. & Baudet, P. (1950). Helv. chim. Acta 33, 1673.CrossRefGoogle Scholar
Fox, K. K., Holsinger, V. H., Posati, L. P. & Pallansch, M. J. (1967). J. Dairy Sci. 50, 1363.CrossRefGoogle Scholar
Gibbons, R. A. & Cheeseman, G. C. (1962). Biochim. biophys. Acta 56, 354.CrossRefGoogle Scholar
Hindle, E. J. & Wheelock, J. V. (1970). Proc. Nutr. Soc. 29, 89.CrossRefGoogle Scholar
Jollès, P., Alais, C., Adam, A., Delfour, A. & Jollès, J. (1964). Chimia 18, 357.Google Scholar
Jollès, P., Alais, C., Delfour, A. & Jollès, J. (1963). Unpublished. Cited in Glycoproteins, 1966, p. 345 (Ed. Gottschalk, A.). Amsterdam, London, New York: Elsevier.Google Scholar
Kannan, A. & Jenness, R. (1961). J. Dairy Sci. 44, 808.CrossRefGoogle Scholar
Long, J. E., Van Winkle, Q. & Gould, I. A. (1963). J. Dairy Sci. 46, 1329.CrossRefGoogle Scholar
MacKinlay, A. G. & Wake, R. G. (1965). Biochim. biophys. Acta 104, 167.CrossRefGoogle Scholar
Morrissey, P. A. (1969). J. Dairy Res. 36, 333.CrossRefGoogle Scholar
Powell, M. E. & Palmer, L. S. (1935). J. Dairy Sci. 18, 401.Google Scholar
Pyne, G. T. (1945). Biochem. J. 39, 385.Google Scholar
Pyne, G. T. (1953). Chemy Ind. p. 302.Google Scholar
Rose, D. (1962). J. Dairy Sci. 45, 1305.CrossRefGoogle Scholar
Sawyer, W. H. (1969). J. Dairy Sci. 52, 1347.Google Scholar
Sinkinson, G. & Wheelock, J. V. (1970). J. Dairy Res. 37, 113.CrossRefGoogle Scholar
Tessier, H., Yaguchi, M. & Rose, D. (1969). J. Dairy Sci. 52, 139.CrossRefGoogle Scholar
Wake, R. G. (1959). Aust. J. biol. Sci. 12, 479.CrossRefGoogle Scholar
Waugh, D. F. & Von Hippel, P. H. (1956). J. Am. chem. Soc. 78, 4576.CrossRefGoogle Scholar
Wheelock, J. V. & Sinkinson, G. (1969). Biochim. biophys. Acta 194, 597.CrossRefGoogle Scholar
Zittle, C. A., Thompson, M. P., Custer, J. H. & Cerbulis, J. (1962). J. Dairy Sci. 45, 807.Google Scholar