Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T03:49:54.382Z Has data issue: false hasContentIssue false

Numerical taxonomy of psychrotrophic bacteria isolated from raw ewes' milk

Published online by Cambridge University Press:  01 June 2009

María-Rosario García-Armesto
Affiliation:
Departamento De Higiene y Tecnología de los Alimentos, Universidad de León, 24071 León, España
Miguel Prieto
Affiliation:
Departamento De Higiene y Tecnología de los Alimentos, Universidad de León, 24071 León, España
Carlos Alonso
Affiliation:
Departamento De Higiene y Tecnología de los Alimentos, Universidad de León, 24071 León, España
María-Luisa GarcíLópez
Affiliation:
Departamento De Higiene y Tecnología de los Alimentos, Universidad de León, 24071 León, España
María-Camino García-Fernández
Affiliation:
Departamento De Higiene y Tecnología de los Alimentos, Universidad de León, 24071 León, España
Andrés Otero
Affiliation:
Departamento De Higiene y Tecnología de los Alimentos, Universidad de León, 24071 León, España

Summary

A total of 204 psychrotrophic isolates from raw ewes' milk (hand and machine milked) were identified by conventional methods. In addition, a numerical taxonomic study was conducted on 180 of these isolates and 19 reference strains. Three of the isolates were yeasts. Using identification schemes, 54 isolates were assigned to genera of Gram-negative aerobic rods (Pseudomonas, Acinetobacter, Flavobacterium, Moraxella and Psychrobacter), 48 were Enterobacteriaceae (Entero-bacter, Hafnia, Klebsiella, Citrobacter and Serratia) and one was identified as Aeromonas hydrophila. The 98 Gram-positive isolates were identified as Enterococcus, Streptococcus, Leuconostoc, Lactococcus, Bacillus, Staphylococcus, Micrococcus, Aureobacterium, Kurthia and Microbacterium. At the 82% similarity level (SSM), 18 clusters were formed. Cluster I included 34 strains of Lactococcus, Streptococcus and Leuconostoc. Most of the 35 strains in cluster II were Enterococcus. Clusters III and IV were identified as Kurthia and Microbacterium respectively. Cluster V was identified as Aureobacterium and cluster VI consisted of coagulase-negative staphylococci. Gram-negative isolates formed 12 clusters: Aeromonas (one cluster), Enterobacteriaceae (two clusters), Flavobacterium (two clusters), Pseudomonas and Psychrobacter immobilis (three clusters) and Acinetobacter (four clusters). Non-motile variants of Ps. fragi were found. Enterococcus and Enterobacteriaceae did not have significant spoilage properties. As expected, Gram-negative aerobic rods were proteolytic and/or lipolytic even at low temperature. Contamination with certain types of psychrotrophs (Gram-negative aerobic rods and enterococci) seemed to be associated with the milking method. The isolate of Aes. hydrophila had properties associated with virulence.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anon. 1978 Bacteriology. In Handbook of Manual Microtiter Procedures, 2nd edn, pp. 28105 (Eds T. B. Conrath and N. B. Coupe). London: Whitefriars PressGoogle Scholar
Bishop, J. R. & White, C. H. 1986 Assessment of dairy product quality and potential shelf-life—a review. Journal of Food Protection 49 739753CrossRefGoogle ScholarPubMed
Bouvet, P. J. M. & Grimont, P. A. D. 1986 Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. International Journal of Systematic Bacteriology 36 228240CrossRefGoogle Scholar
Bramley, A. J. & McKinnon, C. H. 1990 The microbiology of raw milk. In Dairy Microbiology, vol. 1. The Microbiology of Milk, 2nd edn, pp. 163208 (Ed. Robinson, R. K.). London: Elsevier Applied ScienceGoogle Scholar
Bridge, P. D. & Sneath, P. H. A. 1983 Numerical taxonomy of Streptococcus. Journal of General Microbiology 129 565597Google ScholarPubMed
Chapman, H. R. & Sharpe, M. E. 1990 Microbiology of cheese. In Dairy Microbiology, vol. 2. The Microbiology of Milk Products, 2nd edn, pp. 203289 (Ed. Robinson, R. K.). London: Elsevier Applied ScienceGoogle Scholar
Conrath, T. B. & Coupe, N. B. (Eds) 1978 Handbook of Manual Microtiter Procedures, 2nd edn.Guernsey, UK: Dynatech PublicationsGoogle Scholar
Cousin, M. A. 1982 Presence and activity of psychrotrophic microorganisms in milk and dairy products. A review. Journal of Food Protection 45 172207CrossRefGoogle ScholarPubMed
Cowan, S. T. 1974 Cowan & Steel's Manual for the Identification of Medical Bacteria, 2nd edn.London: Cambridge University PressGoogle Scholar
Cox, J. M. & Mac Rae, I. C. 1989 A numerical taxonomic study of proteolytic and lipolytic psychrotrophs isolated from caprine milk. Journal of Applied Bacteriology 66 137152CrossRefGoogle ScholarPubMed
Cox, L. J., Keller, N. & van Schothorst, M. 1988 The use and misuse of quantitative determinations of Enterobacteriaceae in food microbiology. Journal of Applied Bacteriology 65 (Symposium Supplement) 237S249SCrossRefGoogle Scholar
D'Aoust, J.-Y. 1989 Contemporary concerns on the microbiological safety of milk and dairy products. In Modern Microbiological Methods for Dairy Products, pp. 15–45 (Eds IDF-AOAC-FEMS-IUMS). Brussels: International Dairy Federation.Google Scholar
Doyle, M. P. (Ed.) 1989 Foodborne Bacterial Pathogens. New York: Marcel DekkerGoogle Scholar
Facklam, R. R. 1973 Comparison of several laboratory media for presumptive identification of enterococci and group D streptococci. Applied Microbiology 26 138145CrossRefGoogle ScholarPubMed
Fox, P. F. 1987 Cheese: an overview. In Cheese: Chemistry, Physics and Microbiology, vol. 1. General Aspects, pp. 132 (Ed. Fox, P. F.). London: Elsevier Applied ScienceGoogle Scholar
Frank, J. F., Hankin, L., Koburger, J. A. & Marth, E. H. 1985 Tests for groups of microorganisms. In Standard Methods for the Examination of Dairy Products, 15th edn, pp. 189201 (Ed. Richardson, G. H.). Washington, DC: American Public Health AssociationGoogle Scholar
Garvie, E. I. 1960. The genus Leuconostoc and its nomenclature. Journal of Dairy Research 27 283292CrossRefGoogle Scholar
Gaya, P., Medina, M. & Núñez, M. 1987 Enterobacteriaceae, coliforms, faecal coliforms and salmonellas in raw ewes' milk. Journal of Applied Bacteriology 62 321326CrossRefGoogle ScholarPubMed
Harrigan, W. F. & McCance, M. E. 1976 Laboratory Methods in Food and Dairy Microbiology, 2nd edn.London: Academic PressGoogle Scholar
Hendrie, M. S. & Shewan, J. M. 1979 The identification of pseudomonads. In Identification Methods for Microbiologists, 2nd edn, pp. 114 (Eds Skinner, F. A. and Lovelock, D. W.). London: Academic PressGoogle Scholar
Hugh, R. & Leifson, E. 1953 The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. Journal of Bacteriology 66 2426CrossRefGoogle ScholarPubMed
Juni, E. & Heym, G. A. 1986 Psychrobacter immobilis gen. nov., sp. nov.: genospecies composed of Gram-negative, aerobic, oxidase-positive coccobacilli. International Journal of Systematic Bacteriology 36 388391CrossRefGoogle Scholar
Kandler, O. & Weiss, N. 1986 Genus Lactobacillus. In Bergey's Manual of Systematic Bacteriology, vol. II, pp. 12091234 (Eds Sneath, P. H. A., Mair, N. S. and Sharpe, M. E.). Baltimore, MD: Williams & WilkinsGoogle Scholar
King, E. O., Ward, W. K. & Raney, D. E. 1954 Two simple media for the demonstration of pyocyanin and fluorescein. Journal of Laboratory and Clinical Medicine 44 301307Google Scholar
Krieg, N. R. (Ed.) 1984 Bergey's Manual of Systematic Bacteriology, vol. I. Baltimore, MD: Williams & WilkinsGoogle Scholar
Lacasa Godina, A. 1986 Hard and semi-hard cheese from sheep's and goat's milk. International Dairy Federation Bulletin No. 202 98109Google Scholar
Lányi, B. 1987 Classical and rapid identification methods for medically important bacteria. In Methods in Microbiology, vol. 19, pp. 167 (Eds Colwell, R. R. and Grigorova, R.). London: Academic PressGoogle Scholar
Lee, C.-Y. & Fung, D. Y. C. 1982 Miniaturized methods and computer analysis in meat microbiology. In Rapid Methods and Automation in Microbiology (3rd International Symposium, 1981), pp. 191193 (Ed. Tilton, R. C.). Washington, DC: American Society for MicrobiologyGoogle Scholar
Lee, J. S. & Kraft, A. A. 1984 Proteolytic microorganisms. In Compendium of Methods for the Microbiological Examination of Foods, 2nd edn, pp. 155159 (Ed. Speck, M. L.). Washington, DC: American Public Health AssociationGoogle Scholar
Lelliott, R. A., Billing, E. & Hayward, A. C. 1966 A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Bacteriology 29 470489CrossRefGoogle ScholarPubMed
Lewis, S. J. & Gilmour, A. 1987 Microflora associated with the internal surfaces of rubber and stainless steel milk transfer pipelines. Journal of Applied Bacteriology 62 327333CrossRefGoogle Scholar
Lowe, G. H. 1962 The rapid detection of lactose fermentation in paracolon organisms by the demonstration of β-D-galactosidase. Journal of Medical Laboratory Technology 19 2125Google ScholarPubMed
Marcos, A. 1987 Spanish and Portuguese cheese varieties. In Cheese: Chemistry, Physics & Microbiology, vol. 2. Major Cheese Groups, pp. 185219 (Ed. Fox, P. F.). London: Elsevier Applied ScienceGoogle Scholar
Mehlman, I. J. 1984 Coliforms, fecal coliforms, Escherichia coli and enteropathogenic E. coli. In Compendium of Methods for the Microbiological Examination of Foods, 2nd edn, pp. 265285 (Ed. Speck, M. L.). Washington, DC: American Public Health AssociationGoogle Scholar
Molin, G., Stenström, I.-M. & Ternström, A. 1983 The microbial flora of herring fillets after storage in carbon dioxide, nitrogen or air at 2 °C. Journal of Applied Bacteriology 55 4956CrossRefGoogle ScholarPubMed
Molin, G. & Ternström, A. 1982 Numerical taxonomy of psychrotrophic pseudomonads. Journal of General Microbiology 128 12491264Google ScholarPubMed
Molin, G., Ternström, A. & Ursing, J. 1986 Pseudomonas lundensis, a new bacterial species isolated from meat. International Journal of Systematic Bacteriology 36 339342CrossRefGoogle Scholar
Muir, D. D. 1990 The microbiology of heat-treated fluid milk products. In Dairy Microbiology, vol. 1. The Microbiology of Milk, 2nd edn, pp. 209243 (Ed. Robinson, R. K.). London: Elsevier Applied ScienceGoogle Scholar
Nishimura, Y., Ino, T. & Iizuka, H. 1988 Acinetobacter radioresistens sp. nov. isolated from cotton and soil. International Journal of Systematic Bacteriology 38 209211CrossRefGoogle Scholar
Nuñez, J. A., Chavarri, F. J. & Núñez, M. 1984 Psychrotrophic bacterial flora of raw ewes' milk, with particular reference to Gram-negative rods. Journal of Applied Bacteriology 57 2329CrossRefGoogle ScholarPubMed
Núñez, M., Medina, M. & Gaya, P. 1989 Ewes' milk cheese: technology, microbiology and chemistry. Journal of Dairy Research 56 303321CrossRefGoogle ScholarPubMed
Otte, I., Tolle, A. & Hahn, G. 1979 [Microbial analysis of milk and milk products. 2. Miniaturized primary tests for identification of genera.] Milchwissenschaft 34 152156Google Scholar
Palumbo, S. A. 1986 Is refrigeration enough to restrain foodborne pathogens? Journal of Food Protection 49 10031009CrossRefGoogle ScholarPubMed
Priest, F. G. & Pleasants, J. G. 1988 Numerical taxonomy of some leuconostocs and related bacteria isolated from Scotch whisky distilleries. Journal of Applied Bacteriology 64 379387CrossRefGoogle Scholar
Prieto, M. 1990 [Bacterial associations in spoilage of chilled sheep carcasses.] PhD Thesis, University of LeónGoogle Scholar
Prieto, M., García-Armesto, M. R., García-López, M. L., Otero, A. & Moreno, B. 1992 Numerical taxonomy of Gram-negative, nonmotile, nonfermentative bacteria isolated during chilled storage of lamb carcasses. Applied and Environmental Microbiology 58 22452249CrossRefGoogle ScholarPubMed
Robinson, R. K. (Ed.) 1990 Dairy Microbiology, vols 1 & 2, 2nd edn.London: Elsevier Applied ScienceGoogle Scholar
Rossau, R., van Landschoot, A., Gillis, M. & De Ley, J. 1991 Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accommodate the genera Moraxella, Acinetobacter and Psychrobacter and related organisms. International Journal of Systematic Bacteriology 41 310319CrossRefGoogle Scholar
Schwab, A. H., Leininger, H. V. & Powers, E. M. 1984 Media, reagents and stains. In Compendium of Methods for the Microbiological Examination of Foods, 2nd edn, pp. 788897 (Ed. Speck, M. L.). Washington, DC: American Public Health AssociationGoogle Scholar
Sharpe, M. E. 1979 Identification of the lactic acid bacteria. In Identification Methods for Microbiologists, 2nd edn, pp. 233259 (Eds Skinner, F. A. and Lovelock, D. W.). London: Academic PressGoogle Scholar
Sharpe, M. E., Garvie, E. I. & Tilbury, R. M. 1972 Some slime-forming heterofermentative species of the genus Lactobacillus. Applied Microbiology 23 389397CrossRefGoogle ScholarPubMed
Shaw, B. G. & Latty, J. B. 1988 A numerical taxonomic study of non-motile non-formentative Gramnegative bacteria from foods. Journal of Applied Bacteriology 65 721CrossRefGoogle ScholarPubMed
Sierra, G. 1957 A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie von Leeuwenhoek Journal of Microbiology 23 1522CrossRefGoogle ScholarPubMed
Sneath, P. H. A. 1978 a Classification of microorganisms. In Essays in Microbiology, pp. 9/1–9/31 (Eds Norria, J. R. and Richmond, M. H.). Chichester: John Wiley & SonsGoogle Scholar
Sneath, P. H. A. 1978 b Identification of microorganisms. In Essays in Microbiology pp. 10/1–10/32 (Eds Norris, J. R. and Richmond, M. H.). Chichester: John Wiley & SonsGoogle Scholar
Sneath, P. H. A. & Johnson, R. 1972 The influence on numerical taxonomic similarities of errors in microbiological tests. Journal of General Microbiology 72 377392CrossRefGoogle ScholarPubMed
Sneath, P. H. A. & Sokal, R. R. 1973 Numerical taxonomy: the principles and practice of numerical classification. San Francisco, CA: W. H. Freeman & CoGoogle Scholar
Sokal, R. R. & Michener, C. D. 1958 A statistical method for evaluating systematic relationships. Kansas University Science Bulletin 38 14091438Google Scholar
Suárez, B. & Ferreirós, C. M. 1991 Psychrotrophic flora of raw milk: resistance to several common disinfectants. Journal of Dairy Research 58 127136CrossRefGoogle ScholarPubMed
Van Landschoot, A., Rossau, R. & De Ley, J. 1986 Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acinetobacter. International Journal of Systematic Bacteriology 36 150160CrossRefGoogle Scholar
Walker, S. J. 1988 Major spoilage micro-organisms in milk and dairy products. Journal of the Society of Dairy Technology 41 9192CrossRefGoogle Scholar
Wessels, D., Jooste, P. J. & Mustert, J. F. 1989 Psychrotrophic, proteolytic and lipolytic properties of Enterobacteriaceae isolated from milk and dairy products. International Journal of Food Microbiology 9 7983CrossRefGoogle ScholarPubMed
Wessels, D., Jooste, P. J. & Mostert, J. F. 1990 Technologically important characteristics of Enterococcus isolates from milk and dairy products. International Journal of Food Microbiology 10 349352CrossRefGoogle ScholarPubMed