Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T20:13:46.068Z Has data issue: false hasContentIssue false

Mechanisms of heat inactivation of a proteinase from Pseudomonas fluorescens biotype I*

Published online by Cambridge University Press:  01 June 2009

Peter Diermayr
Affiliation:
Süddeutsche Versuchs- und Forschungsanstalt für Milchwirtschaft, D-8050 Freising-Weihenstephan, FRG
Stefan Kroll
Affiliation:
Süddeutsche Versuchs- und Forschungsanstalt für Milchwirtschaft, D-8050 Freising-Weihenstephan, FRG
Henning Klostermeyer
Affiliation:
Süddeutsche Versuchs- und Forschungsanstalt für Milchwirtschaft, D-8050 Freising-Weihenstephan, FRG

Summary

Heat inactivation of a metalloproteinase, isolated from Pseudomonas fluorescens biotype I strain 112, was investigated in the temperature ranges 50–60 °C and 90–140 °C. At 90 °C the denaturation of the enzyme followed first-order kinetics with a decimal reduction time of 110 min and a velocity constant K of 3·5 × 10−4 s−1. Activation energy Ea was 100 kJ/mol for this temperature range. In the 50–60 °C region the proteinase was inactivated by autolysis, as shown by electrophoresis and gel filtration. At 55 °C the decimal reduction time was ∼ 22 s, at 57 °C it was 8 s. Rapid inactivation at 55 °C was only possible if the enzyme was heated from lower temperatures, but not if cooled down from 90 °C. This is due to a conformational change of the protein at this temperature. A model for the description of heat inactivation in the two temperature ranges is proposed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alichanidis, E. & Andrews, A. T. 1977 Some properties of the extracellular protease produced by the psychrotrophic bacterium Pseudomonas fluorescens strain AR-11. Biochimica et Biophysica Acta. 485 417433Google Scholar
Barach, J. T. & Adams, D. M. 1977 Thermostability at ultrahigh temperatures of thermolysin and a protease from a psychrotrophic Pseudomonas. Biochimica et Biophysica Acta. 485 417423CrossRefGoogle Scholar
Barach, J. T., Adams, D. M. & Speck, M. L. 1976 Low temperature inactivation in milk of heat-resistant proteases from psychrotrophic bacteria. Journal of Dairy Science. 59 391395CrossRefGoogle Scholar
Barach, J. T., Adams, D. M. & Speck, M. L. 1978 Mechanism of low temperature inactivation of a heat-resistant bacterial protease in milk. Journal of Dairy Science. 61 523528CrossRefGoogle Scholar
Chen-Kiang, S., Stein, S. & Udenfkiend, S. 1979 Gel electrophoresis of fluorescent labeled cyanogen bromide cleavage products at the submicrogram level. Analytical Biochemistry. 95 122126CrossRefGoogle ScholarPubMed
Dahlquist, F. W., Long, J. W. & Bigbee, W. L. 1976 Role of calcium in the thermal stability of thermolysin. Biochemistry. 15 11031111CrossRefGoogle ScholarPubMed
Diermayr, P. 1986 [Isolation and characterization of a proteinase of Pseudomonas fluorescens Biotype I.] Thesis, Technische Universität, MünchenGoogle Scholar
Diermayr, P. & Klostermeyer, H. 1984 A new metalloproteinase from Pseudomonas fluorescens biotype I. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 365 13451350CrossRefGoogle ScholarPubMed
Driessen, F. M. 1976 [Proteolysis in UHT-sterilized milk and milk products.] Zuivelzicht 68 514515Google Scholar
Driessen, F. M. 1983 Lipases and proteinases in milk. Thesis, University of WageningenGoogle Scholar
Feder, J., Garrett, L. R. & Wildi, B. S. 1971 Studies on the role of calcium in thermolysin. Biochemistry 10 45524555CrossRefGoogle ScholarPubMed
Fehrnström, H. & Moberg, U. 1977 SDS and conventional polyacrylamide gel electrophoresis with LKB 2117 Multiphor. LKB Application note 306Google Scholar
Görg, A., Postel, W., Westermeier, R., Righetti, P. G. & Ek, K. 1981 One- and two-dimensional electrophoresis performed horizontally in ultrathin SDS pore-gradient gels. LKB Application note 320Google Scholar
Jenness, R. & Koops, J. 1962 Preparation and properties of a salt solution which simulates milk ultrafiltrate. Netherlands Milk and Dairy Journal 16 153164Google Scholar
Kroll, S. & Klostermeyer, H. 1984 a Heat inactivation of exogenous proteinases from Pseudomonas fluorescens. 1. Possibility of inactivation in milk. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 179 288295CrossRefGoogle Scholar
Kroll, S. & Klostermeyer, H. 1984 b [Proteolytic activities of Pseudomonas fluorescens in milk: determination with azocasein and comparison with HPA.] Zeitschrift für Lebensmittel-Untersuchung und -Forschung 178 179186CrossRefGoogle ScholarPubMed
Marshall, R. T. & Marstiller, J. K. 1981 Unique response to heat of extracellular protease of Pseudomonas fluorescens M5. Journal of Dairy Science 64 15451550CrossRefGoogle ScholarPubMed
Mortazavi, A. 1973 [Research on resistance of psychrophilic bacteria to temperature and poison.] Thesis, University of Stuttgart-HohenheimGoogle Scholar
Radola, B. J. 1980 Ultrathin-layer isoelectric focusing in 50–100 μm polyacrylamide gels on silanized glass plates or polyester films. Electrophoresis 1 4356CrossRefGoogle Scholar
Richardson, B. C. 1981 The purification and characterization of a heat-stable protease from Pseudomonas fluorescens B52. New Zealand Journal of Dairy Science and Technology 16 195207Google Scholar
Stepaniak, L. & Fox, P. F. 1983 Thermal stability of an extracellular proteinase from Pseudomonas fluorescens AFT 36. Journal of Dairy Research 50 171184CrossRefGoogle ScholarPubMed
Stepaniak, L. & Fox, P. F. 1985 Isolation and characterization of heat-stable proteinases from Pseudomonas isolate AFT 21. Journal of Dairy Research 52 7789CrossRefGoogle ScholarPubMed
Stepaniak, L., Fox, P. F. & Daly, C. 1982 Isolation and general characterization of a heat-stable proteinase from Pseudomonas fluorescens AFT 36. Biochimica et Biophysica Acta 717 376383CrossRefGoogle ScholarPubMed
Tajima, M., Urabe, I., Yutani, K. & Okada, H. 1976 Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease. European Journal of Biochemistry 64 243247CrossRefGoogle ScholarPubMed
Weigele, M., Tengi, J., De Bernardo, S., Czajkowski, R. & Leimgruber, W. 1976 Fluorimetric reagents for primary amines. Syntheses of 2-alkoxy- and 2-acyloxy-3(2H)-furanons. Journal of Organic Chemistry 41 388389CrossRefGoogle Scholar