Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-28T05:14:39.288Z Has data issue: false hasContentIssue false

Interaction between heated κ-casein and β-lactoglobulin: predominance of hydrophobic interactions in the initial stages of complex formation

Published online by Cambridge University Press:  01 June 2009

Zahurul Haque
Affiliation:
Institute of Food Science, Cornell University, Ithaca, NY 14853, USA
John E. Kinsella
Affiliation:
Institute of Food Science, Cornell University, Ithaca, NY 14853, USA

Summary

Mixtures of κ-casein and β-lactoglobulin (β-lg) were heated at 70 °C in 20 mM-imidazole buffer, pH 6·8 containing 20 mM-EGTA. Aggregation of the κ-casein/β-lg mixture occurred within 90 s and susceptibility to hydrolysis by chymosin decreased significantly within 180 s even though covalent interaction was not detected until after 4000 s. UV-absorbance indicated initial structural destabilization of the heated κ-casein/β-lg mixture followed by a return ( > 350 s) to a spectrum comparable to the native state, indicating molecular rearrangement. Apparent hydrophobicity of κ-casein decreased 80% within 250 s compared to a 38% decrease for β-lg. Under similar conditions, the κ-casein/β-lg mixture (1:1) showed a faster (2·5 times) decrease in apparent hydrophobicity than κ-casein alone with concomitant exposure of acidic (hydrophilic) groups. The results suggested that the driving force for the rearrangement was mainly hydrophobic, i.e. entropic in origin. The tendency of heated and subsequently cooled κ-casein/β-lg to aggregate reached a maximum after heating at 70 °C for 720 s.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aschaffenburg, R. & Drewry, J. 1957 Improved method for the preparation of crystalline β-lactoglobulin and α-lactalbumin from cow's milk. Biochemical Journal 65 273277CrossRefGoogle ScholarPubMed
Bringe, N. A. & Kinsella, J. E. 1986 Use of Platelet Aggregometer to monitor the chymosin-initiated coagulation of casein micelles. Journal of Dairy Research 53 359370CrossRefGoogle Scholar
Brunner, J. R. 1977 Milk proteins. In Food Proteins, pp. 175208. (Eds Whitaker, J. R. and Tannenbaum, S. R.). Westport, CT: Avi Publishing Co.Google Scholar
Bull, H. B. & Breese, K. 1973 Thermal stability of proteins. Archives of Biochemistry and Biophysics 158 681686CrossRefGoogle ScholarPubMed
De Wit, J. N. & Swinkels, C. A. M. 1980 A differential scanning calorimetric study of the thermal denaturation of bovine β-lactoglobulin. Biochimica et Biophysica Acta 624 4050CrossRefGoogle ScholarPubMed
Doi, H., Ideno, S., Ibuki, F. & Kanamori, M. 1981 [Heat induced complex formation between κ-casein and β-lactoglobulin.] Journal of Japanese Society of Food and Nutrition 34 565569Google Scholar
Doi, H., Ideno, S., Ibuki, F. & Kanamori, M. 1983 Participation of the hydrophobic bond in complex formation between κ-casein and β-lactoglobulin. Agricultural and Biological Chemistry 47 407409Google Scholar
Donovan, J. W. 1969 Ultraviolet absorption. In Physical Principles and Techniques of Protein Chemistry, p. 219 (Ed. Leach, S. J.). New York: Academic PressGoogle Scholar
Dupont, M. 1965 [Study of a reversible step in the heat denaturation of bovine β-lactoglobulin A.] Biochimica et Biophysica Acta 102 500513CrossRefGoogle Scholar
Dziuba, J. 1978 [Role of functional groups of casein in the heat-induced interaction between micellar casein and β-lactoglobulin.] Zeszyty Naukowe Akademii Rolniczo-Technicznej w Olsztynie, Technologia Zywnos'ci no.13 4990Google Scholar
Dziuba, J. 1979 The share of functional casein groups in the formation of a complex with β-lactoglobulin. Acta Alimentaria Polonica 5 97114Google Scholar
Haque, Z. & Kito, M. 1983 Lipophilization of αs1-casein. 2. Conformational and functional effects. Journal of Agricultural and Food Chemistry 31 12311237CrossRefGoogle Scholar
Haque, Z., Kristjansson, M. M. & Kinsella, J. E. 1987 Interaction between κ-casein and β-lactoglobulin: possible mechanism. Journal of Agricultural and Food Chemistry 35 644649CrossRefGoogle Scholar
Karush, F., Klinman, N. R. & Marks, R. 1964 An assay method for disulfide groups by fluorescence quenching. Analytical Biochemistry 9 100114CrossRefGoogle ScholarPubMed
Kumosinski, T. F. & Timasheff, S. N. 1966 Molecular interactions of β-lactoglobulin. X. The stoichiometry of the β-lactoglobulin mixed tetramerization. Journal of the American Chemical Society 88 56355642CrossRefGoogle ScholarPubMed
Kyte, J. & Doolittle, R. F. 1982 A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157 105132CrossRefGoogle ScholarPubMed
Long, J. E., Van Winkle, Q. & Gould, I. A. 1963 Heat-induced interaction between crude κ-casein and β-lactoglobulin. Journal of Dairy Science 46 13291334CrossRefGoogle Scholar
McGugan, W. A., Zehren, V. F., Zehren, V. L. & Swanson, A. M. 1954 Interaction between casein and β-lactoglobulin on heating. Science 120 435CrossRefGoogle ScholarPubMed
Mattick, E. C. V. & Hallett, H. S. 1929 The effect of heat on milk. (A) On the coagulability by rennet. (B) On the nitrogen, phosphorus and calcium content. Journal of Agricultural Science 19 452462CrossRefGoogle Scholar
Powell, M. E. 1936 Effects of time and temperature of holding milk heat-treated at various temperatures upon its subsequent coagulation by rennet. Journal of Dairy Science 19 305311CrossRefGoogle Scholar
Powell, M. E. & Palmer, L. S. 1935 Behavior of caseinate sols in a study of a hysteresis-like phenomenon in the rennet coagulation of heated milk. Journal of Dairy Science 18 401414CrossRefGoogle Scholar
Purkayastha, R., Tessier, H. & Rose, D. 1967 Thiol-disulfide interchange in formation of β-lactoglobulin- κ-casein complex. Journal of Dairy Science 50 764766CrossRefGoogle Scholar
Rosen, M. J. 1981 Micelle formation by surfactants. Surfactants and Interfacial Phenomena, ch. 3. New York: InterscienceGoogle Scholar
Rothenbuhler, E. & Kinsella, J. E. 1985 The pH-stat method for assessing protein digestibility: an evaluation. Journal of Agricultural and Food Chemistry 33 433438CrossRefGoogle Scholar
Sawyer, W. H. 1968 Heat denaturation of bovine β-lactoglobulins and relevance of disulfide aggregation. Journal of Dairy Science 51 323329CrossRefGoogle Scholar
Scheraga, H. A., Némethy, G. & Steinberg, I. Z. 1962 The contribution of hydrophobic bonds to the thermal stability of protein conformations. Journal of Biological Chemistry 237 25062508CrossRefGoogle Scholar
Slatter, W. L. & Van Winkle, Q. 1952 An electrophoretic study of the protein in skimmilk. Journal of Dairy Science 35 10831088CrossRefGoogle Scholar
Tanford, C. 1980 The Hydrophobic Effect: formation of micelles and biological membranes, 2nd edn, pp. 14. New York: John Wiley & SonGoogle Scholar
Tessier, H., Yaguchi, M. & Rose, D. 1969 Zonal ultracentrifugation of β-lactoglobulin and κ-casein complexes induced by heat. Journal of Dairy Science 52 139145CrossRefGoogle Scholar
Tobias, J., Whitney, R. McL. & Tracy, P. H. 1952 Electrophoretic properties of milk proteins. II. Effect of heating to 300 °F. by means of the Mallory small-tube heat exchanger on skimmilk proteins. Journal of Dairy Science 35 10361045CrossRefGoogle Scholar
Townend, R., Herskovits, T. T., Swaisgood, H. E. & Timasheff, S. N. 1964 The solution properties of β-lactoglobulin C. Journal of Biological Chemistry 239 41964201CrossRefGoogle ScholarPubMed
Vreeman, H. J., Brinkhuis, J. A. & Van Der Spek, C. A. 1981 Some association properties of bovine SH-κ-casein. Biophysical Chemistry 14 185193CrossRefGoogle ScholarPubMed
Weber, G. & Young, L. B. 1964 Fragmentation of bovine serum albumin by pepsin. I. The origin of the acid expansion of the albumin molecule. Journal of Biological Chemistry 239 14151423CrossRefGoogle ScholarPubMed
Wolfenden, R., Andersson, L., Cullis, P. M. & Southgate, C. C. B. 1981 Affinities of amino acid side chains for solvent water. Biochemistry 20 849855CrossRefGoogle ScholarPubMed
Zittle, C. A. & Custer, J. H. 1963 Purification and some of the properties of αs-casein and κ-casein. Journal of Dairy Science 46 11831188CrossRefGoogle Scholar