Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-13T06:03:20.926Z Has data issue: false hasContentIssue false

Influence of milk protein concentration on the gelling activity of chymosin and bovine pepsin

Published online by Cambridge University Press:  01 June 2009

Pascaline Garnot
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de Recherches de Technologie Laitière, 65 rue de Saint Brieuc, 35042 Rennes Cedex, France
Christian Corre
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de Recherches de Technologie Laitière, 65 rue de Saint Brieuc, 35042 Rennes Cedex, France

Summary

Two stages of gelling by the milk-clotting enzymes chymosin and pepsin were studied at different milk protein concentrations, using milk retentates. In each case, enzymic velocity versus protein concentration described a standard hyperbola. According to the experimental conditions such as pH and type of enzyme, which changed the enzyme concentration used, either the quasi-linear part of the hyperbola was observed, or the velocity hardly increased and tended to a limiting value. Gelling occurred with a lower degree of proteolysis of κ-casein when the protein concentration increased but a minimum proteolysis (1% of total nitrogenous matter content) was required for aggregation to take place. Gelling time varied with the protein concentration, the pH and the enzyme concentration. The final degree of proteolysis of κ-casein was the same whatever the substrate concentration used.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alais, C., Mocquot, G., Nitschmann, H. & Zahler, P. (1953). Helvetica Chimica Acta 36, 19551968.CrossRefGoogle Scholar
Alais, C. & Stenne, P. (1965). Lait 45, 129136.CrossRefGoogle Scholar
Beeby, R., Hill, R. D. & Snow, N. S. (1971). In Milkproteins: chemistry and molecular biology, vol. 2, pp. 421465. (Ed. Mackenzie, H. A.) New York: Academic Press.Google Scholar
Berridge, N. J. (1942). Nature 149, 194195.CrossRefGoogle Scholar
Brule, G., Maubois, J.-L. & Fauquant, J. (1974). Lait 54, 600615.CrossRefGoogle Scholar
Castle, A. V. & Wheelock, J. V. (1973). Journal of Dairy Research 40, 7784.CrossRefGoogle Scholar
Creamer, L. K., Mills, O. E. & Richards, E. L. (1971). Journal of Dairy Research 38, 269280.CrossRefGoogle Scholar
Delfour, A., Jollès, J., Alais, C. & Jollès, P. (1965). Biochemical and Biophysical Research Communications 19, 452455.CrossRefGoogle Scholar
Douillard, R. & Ribadeau Dumas, B. (1970). Bulletin de la Société de Chimie Biologique 52, 14291455.Google Scholar
Foltmann, F. (1959). 15th International Dairy Congress, London 2, 655661.Google Scholar
Garnier, J. (1962). Thesis, University of Paris.Google Scholar
Garnot, P., Thapon, J.-L., Mathieu, C. -M., Maubois, J.-L. & Ribadeau Dumas, B. (1972). Journal of Dairy Science 55, 16411650.CrossRefGoogle Scholar
Green, M. L. (1973). Netherlands Milk and Dairy Journal 27, 278285.Google Scholar
Green, M. L., Hobbs, D. G., Morant, S. V. & Hill, V. A. (1978). Journal of Dairy Research 45, 413422.CrossRefGoogle Scholar
Green, M. L. & Marshall, R. J. (1977). Journal of Dairy Research 44, 521531.CrossRefGoogle Scholar
Hammarsten, O. (1874). Upsala Läkareforenings Förhandlingar 9, 363.Google Scholar
Harden, A. & Macallum, A. B. (1914). Biochemical Journal 8, 9099.CrossRefGoogle Scholar
Hill, R. D., Lahav, E. & Givol, D. (1974). Journal of Dairy Research 41, 147153.CrossRefGoogle Scholar
Jollès, P., Alais, C. & Jollès, J. (1962). Archives of Biochemistry and Biophysics 98, 5657.CrossRefGoogle Scholar
Lawrence, R. C. & Creamer, L. K. (1969). Journal of Dairy Research 36, 1120.CrossRefGoogle Scholar
Mackinlay, A. G. & Wake, R. G. (1965). Biochimica et Biophysica Acta 104, 167180.CrossRefGoogle Scholar
Mackinlay, A. G. & Wake, R. G. (1971). In Milk proteins: Chemistry and molecular biology, vol. 2, pp. 175215. (Ed. Mackenzie, H. A..) New York: Academic Press.CrossRefGoogle Scholar
Maubois, J.-L. & Mocquot, G. (1971). Lait 51, 495533.CrossRefGoogle Scholar
Mercier, J. C., Brignon, G. & Ribadeau Dumas, B. (1973). European Journal of Biochemistry 35, 222235.CrossRefGoogle Scholar
Payens, T. A. J. (1977). Biophysical Chemistry 6, 263270.CrossRefGoogle Scholar
Pelissier, J. -P., Mercier, J. -C. & Ribadeau Dumas, B. (1974). Annales de Biologie Animate, Biochimie, Biophysique 14, 343362.CrossRefGoogle Scholar
Waugh, D. F. & Von Hippel, P. H. (1956). Journal of the American Chemical Society 78, 45764582.CrossRefGoogle Scholar