Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T12:50:26.338Z Has data issue: false hasContentIssue false

Growth studies on the lactic streptococci: II. The effect of agitation on the growth characteristics of Streptococcus lactis ML8 in batch culture

Published online by Cambridge University Press:  01 June 2009

A. R. Keen
Affiliation:
New Zealand Dairy Research Institute, Palmerston North, New Zealand

Summary

Investigations on the growth characteristics of Streptococcus lactis ML8 in skim-milk medium have indicated that agitation of the medium may decrease the growth rate of the organism by decreasing the availability of CO2 (CO2 effect) and of soluble nitrogen (soluble nitrogen effect). The former effect was observed only when the CO2 concentration was depleted by heat sterilization; the latter occurred when a certain threshold level of agitation was exceeded. Results suggested that the soluble nitrogen affect was caused by an alteration in the rate of diffusion of substances formed in the immediate vicinity of the bacterial cell by the proteolytic enzyme system.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bergère, J.-L. (1968). Lait 48, 1.CrossRefGoogle Scholar
Bungay, H. R. III & Wiggert, J. M. (1965). Biotechnol. Bioengng 7, 322.CrossRefGoogle Scholar
Calderbank, P. H. & Jones, S. J. R. (1961). Trans. Instn Chem. Engrs 39, 363.Google Scholar
Citti, J. E., Sandine, W. E. & Elliker, P. R. (1963). J. Dairy Sci. 46, 337.CrossRefGoogle Scholar
Citti, J. E., Sandine, W. E. & Elliker, P. R. (1965). J. Dairy Sci. 48, 14.CrossRefGoogle Scholar
Duitschaever, C. L. & Leggatt, A. G. (1965). J. Milk Fd Technol. 28, 97.CrossRefGoogle Scholar
Finn, R. K. (1954). Bact. Rev. 18, 254.CrossRefGoogle Scholar
Hewitt, L. F. (1950). Oxidation-Reduction Potentials in Bacteriology and Biochemistry, 6th edn.Edinburgh: Livingstone.CrossRefGoogle Scholar
Holmström, B. (1968). Appl. Microbiol. 16, 73.CrossRefGoogle Scholar
Hull, M. E. (1947). J. Dairy Sci. 30, 881.CrossRefGoogle Scholar
Keen, A. R. (1972). J. Dairy Res. 39, 133.CrossRefGoogle Scholar
Kempe, L. L. & West, R. E. (1959). J. biochem. microbiol. Technol. Engng 1, 335.CrossRefGoogle Scholar
Koditschek, L. K., Hendlin, D. & Woodruff, H. B. (1949). J. biol. Chem. 179, 1093.CrossRefGoogle Scholar
Milko, E. S., Barisova, O. K. & Rabotnova, I. L. (1966). Prikl. Biokhim. Mikrobiol. 2, 409.Google Scholar
Rahn, O., Hegarty, C. P. & Deuel, R. E. (1938). J. Bact. 35, 547.CrossRefGoogle Scholar
Reed, G. B. & Orr, J. H. (1943). J. Bact. 45, 309.CrossRefGoogle Scholar
Reiter, B. & Oram, J. D. (1961). J. Dairy Res. 28, 175.CrossRefGoogle Scholar
Rogers, L. A. & Whittier, E. O. (1928). J. Bact. 16, 211.CrossRefGoogle Scholar
Shkundova, Yu. V., Egorov, N. S. & Ovcharova, T. P. (1965). Antibiotiki 10, 784.Google Scholar
Stanley, S. O. & Rose, A. H. (1967). J. gen. Microbiol. 48, 9.CrossRefGoogle Scholar
Vogel, A. I. (1951). Textbook of Quantitative Inorganic Analysis, 2nd edn, p. 802. London: Longmans.Google Scholar
Whitehead, H. R., Jones, P. A. & Robertson, P. S. (1958). J. Dairy Res. 25, 24.CrossRefGoogle Scholar