Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-29T18:44:37.419Z Has data issue: false hasContentIssue false

Chemical changes in dried skim-milk during storage

Published online by Cambridge University Press:  01 June 2009

E. L. Richards
Affiliation:
The Dairy Research Institute (N.Z.), Palmerston North, New Zealand
M. R. Chandrasekhara
Affiliation:
The Dairy Research Institute (N.Z.), Palmerston North, New Zealand

Summary

Dried skim-milk stored at 55°C in air at 70% relative humidity has been found to contain lactulose, galactose, tagatose, glyceraldehyde and maltol; and formic, acetic and glycollic acids. These compounds are not present, or are present only in trace quantities, in fresh dried skim-milk. It is suggested that while the proteinsugar reaction is responsible for most of the browning of the powder, many of the compounds found are formed by degradation of lactose catalysed by the free basic amino groups of the casein. The compounds so formed probably then react with amino groups in a Maillard reaction and thus contribute to the browning of the milk powder.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adachi, S. & Nakanishi, T. (1958). Nippon Nogei-kagaku Kaishi, 32, 309.CrossRefGoogle Scholar
Buch, M. L., Montgomery, R. & Porter, W. L. (1952). Anal. Chem. 24, 489.CrossRefGoogle Scholar
Cavallini, D., Frontali, N. & Toschi, G. (1949). Nature, Lond., 163, 568.Google Scholar
Corbett, W. M. & Kenner, J. (1953). J. Chem. Soc. p. 2245.Google Scholar
Dagley, S., Fewster, M. E. & Happold, F. C. (1952). J. Bact. 63, 327.CrossRefGoogle Scholar
Denison, F. W. & Phares, E. F. (1952). Anal Chem. 24, 1628.CrossRefGoogle Scholar
Feigl, F. (1947). Qualitative Analysis by Spot Tests, 3rd ed. Amsterdam: Elsevier Publ. Co.Google Scholar
Gottschalk, A. & Partridge, S. M. (1950). Nature, Lond., 165, 684.Google Scholar
Gould, I. A. (1945 a). J. Dairy Sci. 28, 379.CrossRefGoogle Scholar
Gould, I. A. (1945 b). J. Dairy Sci. 28, 367.CrossRefGoogle Scholar
Huelin, F. E. (1952). Aust. J. Sci. Res. B, 5, 328.Google Scholar
Isherwood, F. A. & Hanes, C. S. (1953). Biochem. J. 55, 824.CrossRefGoogle Scholar
Keeney, D. G., Patton, S. & Josephson, D. V. (1950). J. Dairy Sci. 33, 526.CrossRefGoogle Scholar
Lea, C. H. (1948). J. Dairy Res. 15, 369.CrossRefGoogle Scholar
Lea, C. H. & Hannan, R. S. (1949). Biochim. Biophys. Acta, 3, 313.CrossRefGoogle Scholar
Lea, C. & Hannan, R. S. (1950). Biochim. Biophys. Acta, 4, 518.CrossRefGoogle Scholar
Lea, C. H., Hannan, R. S. & Rhodes, D. N. (1951). Biochim. Biophys. Acta, 7, 366.CrossRefGoogle Scholar
Lynn, W. S., Steele, L. A. & Staple, E. (1956). Anal. Chem. 28, 132.CrossRefGoogle Scholar
Patton, S. (1950 a). J. Dairy Sci. 33, 102.CrossRefGoogle Scholar
Patton, S. (1950 b). J. Dairy Sci. 33, 904.CrossRefGoogle Scholar
Patton, S. & Josephson, D. V. (1949). J. Dairy Sci. 32, 222.CrossRefGoogle Scholar
Reid, R. L. & Lederer, M. (1951). Biochem. J. 50, 60.CrossRefGoogle Scholar
Richards, E. L. (1956). Biochem. J. 64, 639.CrossRefGoogle Scholar
Schenck, J. R. & Speilman, M. A. (1945). J. Amer. Chem. Soc. 67, 2276.CrossRefGoogle Scholar
Walker, J. R. L. & Harvey, R. (1959). J. Dairy Res. 26, 265.CrossRefGoogle Scholar