Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T10:04:08.205Z Has data issue: false hasContentIssue false

Acid-soluble nucleotides of cow's, goat's and sheep's milks, at different stages of lactation

Published online by Cambridge University Press:  01 June 2009

Angel Gil
Affiliation:
Departamento de Investigatión de UNIASA, Granada, Spain
Fermin Sanchez-Medina
Affiliation:
Departamento Interfacultativo de Bioquímica, Universidad de Granada, Granada, Spain

Summary

The acid-soluble ribonucleotides of cow's, goat's and sheep's milks were measured by enzymic and ion-exchange chromatographic procedures at different stages of lactation. Colostra and milk from ruminant species contained orotic acid and 13 well-identified nucleotides: AMP, CMP, GMP, UMP, UDP, GDP, UDP-glucose, UDP-galactose, UDP-N-acetyl-glucosamine, UDP-N-acetyl-galactosamine, UDP-glucuronate, GDP-mannose and GDP-fucose. Cow's, goat's and sheep's colostrum contained significant amounts of nucleotides, which increased in amount from the moment of parturition, to reach a maximum 24–48 h later. The nucleotide concentration decreased thereafter with advancing lactation. Cow's milk contained substantial amounts of orotic acid, which increased during lactation, whereas in goat's and sheep's milk no increase took place. The cytidine and adenosine derivatives in ruminants' milk did not change significantly during lactation. The UDP-glucose/UDP-galactose ratio was measured in ruminants' milk at different stages of lactation.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bandurski, R. S. & Axelrod, B. (1951). Journal of Biological Chemistry 193, 405410.CrossRefGoogle Scholar
Chen, M-H. & Larson, B. L. (1971). Journal of Dairy Science 54, 842846.Google Scholar
Cohn, W. E. (1957). Methods in Enzymology 3, 724743.CrossRefGoogle Scholar
Denamur, R., Fauconneau, G. & Guntz, G. (1959 a). Comptes Rendus Hebdomadaires des Seánces de l' Académie des Sciences 248, 25312533.Google Scholar
Denamur, R., Fauconneau, G. & Guntz, G. (1959 b). Revista Española de Fisiología 15, 301310.Google Scholar
Deutsch, A. & Mattsson, S. (1960). Milk and Dairy Research, Alnarp, Sweden, Report no. 63.Google Scholar
Gil, A. (1978). Thesis, Universidad de Granada, Spain.Google Scholar
Hurlbert, R. B., Sohmitz, H., Brum, A. F. & Potter, V. R. (1954). Journal of Biological Chemistry 209, 2339.CrossRefGoogle Scholar
Johke, T. & Goto, T. (1962). Journal of Dairy Science 45, 735741.CrossRefGoogle Scholar
Keppler, D. (1974). In Methods of Enzymatic Analysis, 2nd edn, vol. 4, pp. 20882096. (Ed. Bergmeyer, H. U.) New York: Academic Press.CrossRefGoogle Scholar
Keppler, D. & Decker, K. (1974). In Methods of Enzymatic Analysis, 2nd edn, vol. 4, pp. 22212224. (Ed. Bergmeyer, H. U.) New York: Academic press.CrossRefGoogle Scholar
Kobata, A., Ziro, S. & Kida, M. (1962). Journal of Biochemistry 51, 277287.CrossRefGoogle Scholar
Krebs, H. A. & Hems, R. (1953). Biochimica et Biophysica Acta 12, 172180.CrossRefGoogle Scholar
Larson, B. L. (1969). Journal of Dairy Science 52, 737747.CrossRefGoogle Scholar
Larson, B. L. (1976). Journal of Dairy Science 59, 18811889.CrossRefGoogle Scholar
Manson, W. (1956). Biochimica et Biophysica Acta 19, 398399.CrossRefGoogle Scholar
Markham, R. & Smith, J. D. (1949). Biochemical Journal 45, 294298.CrossRefGoogle Scholar
Moellering, H. (1974). In Methods of Enzymatic Analysis, 2nd edn, vol. 4, pp. 19591963. (Ed. Bergmeyer., H. U.) New York: Academic Press.CrossRefGoogle Scholar
Paladini, A. C. & Leloir, L. F. (1952). Biochemical Journal 51, 426432.CrossRefGoogle Scholar
Rosenbloom, F. M. & Seeomiller, J. E. (1964). Journal of Laboratory and Clinical Medicine 63, 492500.Google Scholar