Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-29T13:45:06.355Z Has data issue: false hasContentIssue false

Action of rennin on α-, β- and γ-caseins

Published online by Cambridge University Press:  01 June 2009

E. Lahav
Affiliation:
The National and University Institute of Agriculture, Rehovot, Israel
Y. Babad
Affiliation:
The National and University Institute of Agriculture, Rehovot, Israel

Summary

Whole acid casein and α-, β- and γ-caseins were isolated and treated with rennin. Chemical, chromatographical and electrophoretical analyses were done on the caseins and on the products obtained from them after rennin treatment. Three different fractions were obtained which had some specific protective activity for the Ca-sensitive forms of α-, β- and γ-casein, respectively, and which differed in their chemical, chromatographical, and electrophoretical properties.

It is suggested that each casein fraction in milk is associated with its own protective fraction which when released by the action of rennin, allows the casein to clot.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alais, C., Mocquot, G., Nitschmann, H. & Zahler, P. (1953). Helv. chim. acta, 36, 1955.CrossRefGoogle Scholar
Beeby, R. & Nitschmann, H. S. (1963). J. Dairy Res. 30, 7.CrossRefGoogle Scholar
Cerbulis, J., Custer, J. H. & Zittle, C. A. (1959). Arch. Biochem. Biophys. 84, 417.CrossRefGoogle Scholar
Cerbulis, J., Custer, J. H. & Zittle, C. A. (1960). J. Dairy Sci. 43, 1725.CrossRefGoogle Scholar
Cherbuliez, E. & Baudet, P. (1950). Helv. chim. acta, 33, 1673.CrossRefGoogle Scholar
Hawk, P. B., Oser, B. L. & Summeson, W. H. (1954). Practical Physiological Chemistry, 13th ed., p. 953. London: Churchill.Google Scholar
Hipp, N. J., Groves, M. L., Custer, J. H. & McMeekin, T. L. (1952). J. Dairy Sci. 35, 272.CrossRefGoogle Scholar
Hipp, N. J., Groves, M. L. & McMeekin, T. L. (1961). Arch. Biochem. Biophys. 93, 245.CrossRefGoogle Scholar
Jollès, P. & Alais, C. (1961). Biochim. biophys. Acta, 34, 565.CrossRefGoogle Scholar
Keller, W. (1954). Thesis, Bern.Google Scholar
Libbey, L. M. & Ashworth, U. S. (1961). J. Dairy Sci. 44, 1016.CrossRefGoogle Scholar
Linderstrøm-Lang, K. (1925). C. R. Lab. Carlsberg, 16, 48.Google Scholar
Long, J., Vanwinkle, G. & Gould, I. A. (1958). J. Dairy Sci. 41, 317.CrossRefGoogle Scholar
McMeekin, T. L., Hipp, N. J. & Groves, M. L. (1959). Arch. Biochem. Biophys. 83, 35.CrossRefGoogle Scholar
Methods of Analysis (1960). 9th ed., p. 643. Washington: Association of Official Agricultural Chemists.Google Scholar
Neelin, J. M., Rose, D. & Tessier, H. (1962). J. Dairy Sci. 45, 153.CrossRefGoogle Scholar
Nitschmann, H. & Keller, W. (1955). Helv. chim. acta, 38, 942.CrossRefGoogle Scholar
Payens, T. A. J. (1961). Biochim. biophys. Acta, 46, 441.CrossRefGoogle Scholar
Pilson, N. E., Henneberry, G. O. & Baker, B. E. (1960). J. Sci. Fd Agric. 11, 640.CrossRefGoogle Scholar
Reeves, R. E. & Latour, N. G. (1958). Science, 128, 472.CrossRefGoogle Scholar
Schipper, C. J. (1961). Thesis, Wajeninen.Google Scholar
Sode-Mogensen, M. T. & Lahav, E. (1960). Lab. Pract. 9, 21.Google Scholar
Swaisgood, H. E. & Brunner, J. R. (1962). J. Dairy Sci. 45, 1.CrossRefGoogle Scholar
Wake, R. G. (1959). Aust. J. biol., Sci., 12, 479.CrossRefGoogle Scholar
Wake, R. G. & Baldwin, R. L. (1961). Biochim. biophys. Acta, 47, 225.CrossRefGoogle Scholar
Waugh, D. F. (1958). Disc. Faraday Soc. no. 25, 186.CrossRefGoogle Scholar
Waugh, D. F. & von Hippel, P. H. (1956). J. Amer. chem. Soc. 78, 4576.CrossRefGoogle Scholar