Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T12:25:12.332Z Has data issue: false hasContentIssue false

4353 The Role of BCL2 Mediated Calcium Signaling on Leukemia Stem Cell Metabolism

Published online by Cambridge University Press:  29 July 2020

Anagha Inguva
Affiliation:
University of Colorado at Denver
Shanshan Pei
Affiliation:
University of Colorado
Maria Amaya
Affiliation:
University of Colorado
Brett Stevens
Affiliation:
University of Colorado
Courtney Jones
Affiliation:
University of Colorado
Daniel Pollyea
Affiliation:
University of Colorado
Craig Jordan
Affiliation:
University of Colorado
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/GOALS: The objective of this study is to define the molecular mechanisms that control survival of malignant stem cells in acute myeloid leukemia (AML). Leukemia stem cells (LSCs) are not effectively eradicated by standard treatment and lead to resistance and relapse, which contribute to poor survival rates. METHODS/STUDY POPULATION: The recently FDA approved venetoclax, a BCL2 inhibitor, with azacitidine, a hypomethylating agent leads to a 70% response rate in AML patients. Analysis of patients treated with this regimen showed direct targeting of LSCs. BCL2 has a non-canonical function in regulation of intracellular calcium. To determine how BCL2 mediated calcium signaling plays a role in LSC biology, we used LSCs isolated from venetoclax/azacitidine (ven/aza) sensitive and resistant patient samples to measure expression of calcium channels via RNA seq. BIO-ID, siRNA, flow cytometry, seahorse assays, calcium measurements and colony assays were used to determine the effects of calcium channel perturbation on LSC biology. RESULTS/ANTICIPATED RESULTS: BCL2 inhibition leads to decreased OXPHOS activity in primary AML specimens. BIO-ID studies revealed cation/metal ion transporters, ER membrane proteins and ER membrane organization as top enriched pathways interacting with BCL2. RNA-seq data showed increased expression of genes involved in calcium influx into the ER in ven/aza sensitive LSCs and increased expression of genes involved in calcium efflux from the ER in ven/aza resistant samples. Ven/Aza resistant LSCs have increased mitochondrial calcium content, consistent with their increased OXPHOS activity as calcium is required for OXPHOS. Perturbation of these channels leads to decreased OXPHOS activity and decreased viability in LSCs. DISCUSSION/SIGNIFICANCE OF IMPACT: We postulate that a deeper understanding of the mechanisms behind ven/aza targeting of LSCs will lead to the development of novel therapies for patients who do not respond to ven/aza. Our data show targeting intracellular calcium signaling could be a viable therapeutic strategy for AML patients.

Type
Basic Science/Methodology
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Association for Clinical and Translational Science 2020