Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T12:42:54.749Z Has data issue: false hasContentIssue false

Twenty-month-olds categorically discriminate similar sounding vowels regardless of vocabulary level, an event related potentials (ERP) study

Published online by Cambridge University Press:  10 July 2023

Ao CHEN*
Affiliation:
School of Psychology, Beijing Language and Culture University, China Institute for Language Sciences, Utrecht University, the Netherlands

Abstract

The current study investigated whether vocabulary relates to phonetic categorization at neural level in early childhood. Electoencephalogram (EEG) responses were collected from 53 Dutch 20-month-old children in a passive oddball paradigm, in which they were presented with two nonwords “giep” [ɣip] and “gip” [ɣɪp] that were contrasted solely by the vowel. In the multiple-speaker condition, both nonwords were produced by twelve different speakers; while, in the single-speaker condition, one single token of each word was used as stimuli. Infant positive mismatch responses (p-MMR) were elicited in both conditions without significant amplitude differences. When the infants were median split based on vocabulary level, the large and small vocabulary groups showed comparable p-MMR amplitudes yet different scalp distribution in both conditions. These results suggest successful phonetic categorization of native similar sounding vowels at 20 months, and a close relationship between speech categorization and vocabulary development.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adank, P., van Hout, R., & Smits, R. (2004). An acoustic description of the vowels of Northern and Southern Standard Dutch. The Journal of the Acoustical Society of America, 116(3), 17291738. https://doi.org/10.1121/1.1779271CrossRefGoogle ScholarPubMed
Bartha-Doering, L., Deuster, D., Giordano, V., am Zehnhoff-Dinnesen, A., & Dobel, C. (2015). A systematic review of the mismatch negativity as an index for auditory sensory memory: From basic research to clinical and developmental perspectives. Psychophysiology, 52(9), 11151130. https://doi.org/10.1111/psyp.12459CrossRefGoogle ScholarPubMed
Bishop, D., Hardiman, M. J., & Barry, J. G. (2011). Is auditory discrimination mature by middle childhood? A study using time-frequency analysis of mismatch responses from 7 years to adulthood. Developmental Science, 14(2), 402416. https://doi.org/10.1111/j.1467-7687.2010.00990.xCrossRefGoogle ScholarPubMed
Boersma, P., & Weenink, D. (2011). Praat: doing phonetics by computer (Version 5.3.25).Google Scholar
Carbajal, M. J., Peperkamp, S., & Tsuji, S. (2021). A meta-analysis of infants’ word-form recognition. Infancy, 26(3), 369387. https://doi.org/10.1111/infa.12391CrossRefGoogle ScholarPubMed
Čeponien, R., Lepistö, T., Alku, P., Aro, H., & Näätänen, R. (2003). Event-related potential indices of auditory vowel processing in 3-year-old children. Clinical Neurophysiology, 114(4), 652661. https://doi.org/10.1016/S1388-2457(02)00436-4CrossRefGoogle Scholar
Chen, A., Peter, V., Wijnen, F., Schnack, H., & Burnham, D. (2018). Are lexical tones musical? Native language’s influence on neural response to pitch in different domains. Brain and Language, 180–182, 3141. https://doi.org/10.1016/j.bandl.2018.04.006CrossRefGoogle ScholarPubMed
Chen, A., Wijnen, F., Koster, C., & Schnack, H. (2017). Individualized Early Prediction of Familial Risk of Dyslexia: A Study of Infant Vocabulary Development. Frontiers in Psychology, 8, 156. https://doi.org/10.3389/fpsyg.2017.00156CrossRefGoogle ScholarPubMed
Cheng, Y.-Y., Wu, H.-C., Tzeng, Y.-L., Yang, M.-T., Zhao, L.-L., & Lee, C.-Y. (2015). Feature-specific transition from positive mismatch response to mismatch negativity in early infancy: Mismatch responses to vowels and initial consonants. International Journal of Psychophysiology, 96(2), 8494. https://doi.org/proxy.library.uu.nl/10.1016/j.ijpsycho.2015.03.007CrossRefGoogle ScholarPubMed
Cheour-Luhtanen, M., Alho, K., Kujala, T., Sainio, K., Reinikainen, K., Renlund, M., Aaltonen, O., Eerola, O., & Näätänen, R. (1995). Mismatch negativity indicates vowel discrimination in newborns. In Hearing Research (Vol. 82, Issue 1, pp. 5358). https://doi.org/10.1016/0378-5955(94)00164-LCrossRefGoogle ScholarPubMed
Chládková, K., Escudero, P., & Lipski, S. C. (2015). When “AA” is long but “A” is not short: speakers who distinguish short and long vowels in production do not necessarily encode a short–long contrast in their phonological lexicon. Frontiers in Psychology, 6, 438. https://doi.org/10.3389/fpsyg.2015.00438CrossRefGoogle Scholar
Choi, M., & Shukla, M. (2021). A New Proposal for Phoneme Acquisition: Computing Speaker-Specific Distribution. In Brain Sciences (Vol. 11, Issue 2). https://doi.org/10.3390/brainsci11020177CrossRefGoogle ScholarPubMed
Crinnion, A. M., Malmskog, B., & Toscano, J. C. (2020). A graph-theoretic approach to identifying acoustic cues for speech sound categorization. Psychonomic Bulletin & Review, 27(6), 11041125. https://doi.org/10.3758/s13423-020-01748-1CrossRefGoogle ScholarPubMed
Cristia, A., & Seidl, A. (2014). The hyperarticulation hypothesis of infant-directed speech. Journal of Child Language, 41(4), 913934. https://doi.org/10.1017/S0305000912000669CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., & Baillet, S. (1998). A phonological representation in the infant brain. NeuroReport, 9(8), 18851888.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., & Pena, M. (2001). Electrophysiological evidence for automatic phonetic processing in neonates. Neuroreport, 12(14), 31553158.CrossRefGoogle ScholarPubMed
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 921. https://doi.org/10.1016/j.jneumeth.2003.10.009CrossRefGoogle ScholarPubMed
Dietrich, C., Swingley, D., & Werker, J. F. (2007). Native language governs interpretation of salient speech sound differences at 18 months. Proceedings of the National Academy of Sciences, 104(41), 1602716031. https://doi.org/10.1073/pnas.0705270104CrossRefGoogle ScholarPubMed
Englund, K. T., & Behne, D. M. (2005). Infant Directed Speech in Natural Interaction—Norwegian Vowel Quantity and Quality. Journal of Psycholinguistic Research, 34(3), 259280. https://doi.org/10.1007/s10936-005-3640-7CrossRefGoogle ScholarPubMed
Feldman, N. H., Griffiths, T. L., Goldwater, S., & Morgan, J. L. (2013). A role for the developing lexicon in phonetic category acquisition. Psychological Review, 120(4), 751778. https://doi.org/10.1037/a0034245CrossRefGoogle ScholarPubMed
Feldman, N. H., Myers, E. B., White, K. S., Griffiths, T. L., & Morgan, J. L. (2013). Word-level information influences phonetic learning in adults and infants. Cognition, 127(3), 427438. https://doi.org/10.1016/j.cognition.2013.02.007CrossRefGoogle Scholar
Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., Pethick, S. J., Tomasello, M., Mervis, C. B., & Stiles, J. (1994). Variability in Early Communicative Development. Monographs of the Society for Research in Child Development, 59(5), Variability in Early Communicative Development), i+iii-185.CrossRefGoogle ScholarPubMed
Fu, Z., & Monahan, P. J. (2021). Extracting Phonetic Features From Natural Classes: A Mismatch Negativity Study of Mandarin Chinese Retroflex Consonants. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.609898CrossRefGoogle ScholarPubMed
Garcia-Sierra, A., Rivera-Gaxiola, M., Percaccio, C. R., Conboy, B. T., Romo, H., Klarman, L., Ortiz, S., & Kuhl, P. K. (2011). Bilingual language learning: An ERP study relating early brain responses to speech, language input, and later word production. Journal of Phonetics, 39(4), 546557. https://doi.org/10.1016/j.wocn.2011.07.002CrossRefGoogle Scholar
Gennari, G., Marti, S., Palu, M., Fló, A., & Dehaene-Lambertz, G. (2021). Orthogonal neural codes for speech in the infant brain. Proceedings of the National Academy of Sciences, 118(31), e2020410118. https://doi.org/10.1073/pnas.2020410118CrossRefGoogle ScholarPubMed
Goldfield, B. A., & Reznick, J. S. (1990). Early lexical acquisition: rate, content, and the vocabulary spurt. Journal of Child Language, 17(1), 171183. https://doi.org/10.1017/S0305000900013167CrossRefGoogle ScholarPubMed
Goldinger, S. D., Pisoni, D. B., & Logan, J. S. (1991). On the nature of talker variability effects on recall of spoken word lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(1), 152162. https://doi.org/10.1037/0278-7393.17.1.152Google ScholarPubMed
Harnsberger, J. D., Brown, W. S., Shrivastav, R., & Rothman, H. (2010). Noise and Tremor in the Perception of Vocal Aging in Males. In Journal of Voice (Vol. 24, Issue 5, pp. 523530). https://doi.org/10.1016/j.jvoice.2009.01.003CrossRefGoogle ScholarPubMed
He, C., Hotson, L., & Trainor, L. J. (2009). Maturation of cortical mismatch responses to occasional pitch change in early infancy: Effects of presentation rate and magnitude of change. Neuropsychologia, 47(1), 218229. https://doi.org/10.1016/j.neuropsychologia.2008.07.019CrossRefGoogle ScholarPubMed
Hisagi, M., Garrido-Nag, K., Datta, H., & Shafer, V. L. (2015). ERP indices of vowel processing in Spanish–English bilinguals. Bilingualism: Language and Cognition, 18(2), 271289. https://doi.org/10.1017/S1366728914000170CrossRefGoogle Scholar
Hisagi, M., Shafer, V. L., Strange, W., & Sussman, E. S. (2010). Perception of a Japanese vowel length contrast by Japanese and American English listeners: Behavioral and electrophysiological measures. Brain Research, 1360, 89105. https://doi.org/10.1016/j.brainres.2010.08.092CrossRefGoogle ScholarPubMed
Johnson, K., & Sjerps, M. (2018). Speaker normalization in speech perception. UC Berkeley Phonetics and Phonology Lab Annual Report, 3264.Google Scholar
Kuhl, P. K. (1991). Human adults and human infants show a "perceptual magnet effect” for the prototypes of speech categories, monkeys do not. Attention, Perception, & Psychophysics, 50(2), 93107.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., Kozhevnikova, E. V., Ryskina, V. L., Stolyarova, E. I., Sundberg, U., & Lacerda, F. (1997). Cross-Language Analysis of Phonetic Units in Language Addressed to Infants. Science, 277(5326), 684686. https://doi.org/10.1126/science.277.5326.684CrossRefGoogle ScholarPubMed
Kuhl, P. K., Conboy, B. T., Coffey-Corina, S., Padden, D., Rivera-Gaxiola, M., & Nelson, T. (2008). Phonetic learning as a pathway to language: new data and native language magnet theory expanded (NLM-e). Philosophical Transactions of the Royal Society of London.Series B, Biological Sciences, 363(1493), 9791000. https://doi.org/10.1098/rstb.2007.2154CrossRefGoogle ScholarPubMed
Kushnerenko, E., van den Bergh, B., & Winkler, I. (2013). Separating acoustic deviance from novelty during the first year of life: a review of event-related potential evidence. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00595CrossRefGoogle ScholarPubMed
Lee, C.-Y., Yen, H., Yeh, P., Lin, W.-H., Cheng, Y.-Y., Tzeng, Y.-L., & Wu, H.-C. (2012). Mismatch responses to lexical tone, initial consonant, and vowel in Mandarin-speaking preschoolers. Neuropsychologia, 50(14), 32283239. https://doi.org/10.1016/j.neuropsychologia.2012.08.025CrossRefGoogle ScholarPubMed
Leppänen, P. H. T., Eklund, K. M., & Lyytinen, H. (1997). Event‐related brain potentials to change in rapidly presented acoustic stimuli in newborns. Developmental Neuropsychology, 13(2), 175204. https://doi.org/10.1080/87565649709540677CrossRefGoogle Scholar
Mani, N., Coleman, J., & Plunkett, K. (2008). Phonological Specificity of Vowel Contrasts at 18-months. Language and Speech, 51(1–2), 321. https://doi.org/10.1177/00238309080510010201CrossRefGoogle ScholarPubMed
Marklund, E., Schwarz, I.-C., & Lacerda, F. (2019). Amount of speech exposure predicts vowel perception in four- to eight-month-olds. Developmental Cognitive Neuroscience, 36, 100622. https://doi.org/10.1016/j.dcn.2019.100622CrossRefGoogle ScholarPubMed
Martin, A., Schatz, T., Versteegh, M., Miyazawa, K., Mazuka, R., Dupoux, E., & Cristia, A. (2015). Mothers Speak Less Clearly to Infants Than to Adults: A Comprehensive Test of the Hyperarticulation Hypothesis. Psychol Sci, 26(3), 341347. https://doi.org/10.1177/0956797614562453CrossRefGoogle ScholarPubMed
Maurer, U., Bucher, K., Brem, S., & Brandeis, D. (2003). Development of the automatic mismatch response: from frontal positivity in kindergarten children to the mismatch negativity. In Clinical Neurophysiology (Vol. 114, Issue 5, pp. 808817). https://doi.org/proxy.library.uu.nl/10.1016/S1388-2457(03)00032-4CrossRefGoogle Scholar
Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82(3), B101B111. https://doi.org/10.1016/S0010-0277(01)00157-3CrossRefGoogle ScholarPubMed
McMurray, B., Danelz, A., Rigler, H., & Seedorff, M. (2018). Speech categorization develops slowly through adolescence. In Developmental Psychology (Vol. 54, Issue 8, pp. 14721491). American Psychological Association. https://doi.org/10.1037/dev0000542Google Scholar
McMurray, B., Kovack-Lesh, K. A., Goodwin, D., & McEchron, W. (2013). Infant directed speech and the development of speech perception: Enhancing development or an unintended consequence? In Cognition (Vol. 129, Issue 2, pp. 362378). https://doi.org/10.1016/j.cognition.2013.07.015CrossRefGoogle ScholarPubMed
Metsala, J. L., & Walley, A. C. (1998). Spoken vocabulary growth and the segmental restructuring of lexical representations: Precursors to phonemic awareness and early reading ability (Ehri, J. L. M. L. C., Ed.; pp. 89120). Lawrence Erlbaum Associates Publishers.Google Scholar
Morr, M. L., Shafer, V. L., Kreuzer, J. A., & Kurtzberg, D. (2002). Maturation of Mismatch Negativity in Typically Developing Infants and Preschool Children. Ear and Hearing, 23(2), 118136. http://journals.lww.com/ear-hearing/Fulltext/2002/04000/Maturation_of_Mismatch_Negativity_in_Typically.5.aspxCrossRefGoogle ScholarPubMed
Mulak, K. E., Bonn, C. D., Chládková, K., Aslin, R. N., & Escudero, P. (2017). Indexical and linguistic processing by 12-month-olds: Discrimination of speaker, accent and vowel differences. PLOS ONE, 12(5), e0176762.CrossRefGoogle ScholarPubMed
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 25442590. https://doi.org/10.1016/j.clinph.2007.04.026CrossRefGoogle ScholarPubMed
Nazzi, T. (2005). Use of phonetic specificity during the acquisition of new words: Differences between consonants and vowels. Cognition, 98(1), 1330. https://doi.org/10.1016/j.cognition.2004.10.005CrossRefGoogle ScholarPubMed
Nazzi, T., & Bertoncini, J. (2003). Before and after the vocabulary spurt: two modes of word acquisition? Developmental Science, 6(2), 136142. https://doi.org/10.1111/1467-7687.00263CrossRefGoogle Scholar
Peltola, M. S., Kujala, T., Tuomainen, J., Ek, M., Aaltonen, O., & Näätänen, R. (2003). Native and foreign vowel discrimination as indexed by the mismatch negativity (MMN) response. Neuroscience Letters, 352(1), 2528. https://doi.org/proxy.library.uu.nl/10.1016/j.neulet.2003.08.013CrossRefGoogle ScholarPubMed
Poeppel, D., Guillemin, A., Thompson, J., Fritz, J., Bavelier, D., & Braun, A. R. (2004). Auditory lexical decision, categorical perception, and FM direction discrimination differentially engage left and right auditory cortex. Neuropsychologia, 42(2), 183200. https://doi.org/10.1016/j.neuropsychologia.2003.07.010CrossRefGoogle ScholarPubMed
Polka, L., & Bohn, O.-S. (2011). Natural Referent Vowel (NRV) framework: An emerging view of early phonetic development. Journal of Phonetics, 39(4), 467478. https://doi.org/10.1016/j.wocn.2010.08.007CrossRefGoogle Scholar
Rost, G. C., & McMurray, B. (2010). Finding the Signal by Adding Noise: The Role of Noncontrastive Phonetic Variability in Early Word Learning. Infancy, 15(6), 608635. https://doi.org/10.1111/j.1532-7078.2010.00033.xCrossRefGoogle ScholarPubMed
Ryalls, B. O., & Pisoni, D. B. (1997). The effect of talker variability on word recognition in preschool children. Developmental Psychology, 33(3), 441452. https://doi.org/10.1037/0012-1649.33.3.441CrossRefGoogle ScholarPubMed
Saloranta, A., Alku, P., & Peltola, M. S. (2020). Listen-and-repeat training improves perception of second language vowel duration: Evidence from mismatch negativity (MMN) and N1 responses and behavioral discrimination. International Journal of Psychophysiology, 147, 7282. https://doi.org/10.1016/J.IJPSYCHO.2019.11.005CrossRefGoogle ScholarPubMed
Schatz, T., Feldman, N. H., Goldwater, S., Cao, X.-N., & Dupoux, E. (2021). Early phonetic learning without phonetic categories: Insights from large-scale simulations on realistic input. Proceedings of the National Academy of Sciences, 118(7), e2001844118. https://doi.org/10.1073/pnas.2001844118CrossRefGoogle ScholarPubMed
Shafer, V. L., Morr, M. L., Kreuzer, J. A., & Kurtzberg, D. (2000). Maturation of Mismatch Negativity in School-Age Children. Ear and Hearing, 21(3), 242251. http://journals.lww.com/ear-hearing/Fulltext/2000/06000/Maturation_of_Mismatch_Negativity_in_School_Age.8.aspxCrossRefGoogle ScholarPubMed
Shafer, V. L., Yu, Y. H., & Datta, H. (2010). Maturation of Speech Discrimination in 4- to 7-Yr-Old Children as Indexed by Event-Related Potential Mismatch Responses. Ear and Hearing, 31(6), 735745. https://journals.lww.com/ear-hearing/Fulltext/2010/12000/Maturation_of_Speech_Discrimination_in_4__to.2.aspxCrossRefGoogle ScholarPubMed
Shafer, V. L., Yu, Y. H., & Datta, H. (2011). The development of English vowel perception in monolingual and bilingual infants: Neurophysiological correlates. In Journal of Phonetics (Vol. 39, Issue 4, pp. 527545). https://doi.org/10.1016/j.wocn.2010.11.010CrossRefGoogle ScholarPubMed
Shafer, V. L., Yu, Y. H., & Garrido-Nag, K. (2012). Neural mismatch indices of vowel discrimination in monolingually and bilingually exposed infants: Does attention matter? Neuroscience Letters, 526(1), 1014. https://doi.org/10.1016/j.neulet.2012.07.064CrossRefGoogle ScholarPubMed
Shestakova, A., Brattico, E., Huotilainen, M., Galunov, V., Soloviev, A., Sams, M., Ilmoniemi, R., & Näätänen, R. (2002). Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study. Neuro Report, 18131816.Google ScholarPubMed
Shestakova, A., Brattico, E., Soloviev, A., Klucharev, V., & Huotilainen, M. (2004). Orderly cortical representation of vowel categories presented by multiple exemplars. In Cognitive Brain Research (Vol. 21, Issue 3, pp. 342350). https://doi.org/10.1016/j.cogbrainres.2004.06.011CrossRefGoogle ScholarPubMed
Singh, L. (2019). Does infant speech perception predict later vocabulary development in bilingual infants? Journal of Phonetics, 76, 100914. https://doi.org/10.1016/j.wocn.2019.100914CrossRefGoogle Scholar
Sittiprapaporn, W., Tervaniemi, M., Chindaduangratn, C., & Kotchabhakdi, N. (2005). Preattentive discrimination of across-category and within-category change in consonant–vowel syllable. Neuroreport, 16(13), 15131518.CrossRefGoogle ScholarPubMed
Swingley, D. (2009). Contributions of infant word learning to language development. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1536), 36173632. https://doi.org/10.1098/rstb.2009.0107CrossRefGoogle ScholarPubMed
Swingley, D. (2019). Learning Phonology from Surface Distributions, Considering Dutch and English Vowel Duration. Language Learning and Development, 15(3), 199216. https://doi.org/10.1080/15475441.2018.1562927CrossRefGoogle ScholarPubMed
Swingley, D., & Alarcon, C. (2018). Lexical Learning May Contribute to Phonetic Learning in Infants: A Corpus Analysis of Maternal Spanish. Cognitive Science, 42(5), 16181641. https://doi.org/10.1111/cogs.12620CrossRefGoogle Scholar
Trainor, L., McFadden, M., Hodgson, L., Darragh, L., Barlow, J., Matsos, L., & Sonnadara, R. (2003). Changes in auditory cortex and the development of mismatch negativity between 2 and 6 months of age. International Journal of Psychophysiology, 51(1), 515. https://doi.org/10.1016/S0167-8760(03)00148-XCrossRefGoogle Scholar
Tsao, F.-M., Liu, H.-M., & Kuhl, P. K. (2004). Speech Perception in Infancy Predicts Language Development in the Second Year of Life: A Longitudinal Study. Child Development, 75(4), 10671084. https://doi.org/10.1111/j.1467-8624.2004.00726.xCrossRefGoogle ScholarPubMed
Tuninetti, A., Chládková, K., Peter, V., Schiller, N. O., & Escudero, P. (2017). When speaker identity is unavoidable: Neural processing of speaker identity cues in natural speech. In Brain and Language (Vol. 174, pp. 4249). https://doi.org/10.1016/j.bandl.2017.07.001CrossRefGoogle ScholarPubMed
van Leeuwen, T., Been, P., Kuijpers, C., Zwarts, F., Massen, B., & van der Leij, A. (2006). Mismatch reponse is absent in 2-month-old infants at risk for dyslexia. Neuroreport, 17(16), 351355.CrossRefGoogle Scholar
Walley, A., Metsala, J., & Garlock, V. (2003). Spoken vocabulary growth: Its role in the development of phoneme awareness and early reading ability. Reading and Writing, 16(1–2), 520. https://doi.org/10.1023/A:1021789804977CrossRefGoogle Scholar
Wanrooij, K., Boersma, P., & Van Zuijen, T. (2014). Fast phonetic learning occurs already in 2-to-3-month old infants: an ERP study. Frontiers in Psychology, 5, 77. https://doi.org/10.3389/fpsyg.2014.00077CrossRefGoogle ScholarPubMed
Werker, J. F., & Curtin, S. (2005). PRIMIR: A Developmental Framework of Infant Speech Processing. Language Learning and Development, 1(2), 197234. https://doi.org/10.1080/15475441.2005.9684216CrossRefGoogle Scholar
Werker, J. F., Fennell, C. T., Corcoran, K. M., & Stager, C. L. (2002). Infants’ Ability to Learn Phonetically Similar Words: Effects of Age and Vocabulary Size. Infancy, 3(1), 130. https://doi.org/10.1207/S15327078IN0301_1CrossRefGoogle Scholar
Xi, J., Zhang, L., Shu, H., Zhang, Y., & Li, P. (2010). Categorical perception of lexical tones in Chinese revealed by mismatch negativity. Neuroscience, 170(1), 223231. https://doi.org/10.1016/j.neuroscience.2010.06.077CrossRefGoogle ScholarPubMed
Xiao, X.-Z., Wong, H. K., Wang, Y., Zhao, K., Zeng, G. Q., Yip, L.-Y., Wong, G. C.-S., & Tse, C.-Y. (2018). Detecting violation in abstract pitch patterns with mismatch negativity. Psychophysiology, 55(8), e13078. https://doi.org/10.1111/psyp.13078CrossRefGoogle ScholarPubMed
Yeung, H. H., & Werker, J. F. (2009). Learning words’ sounds before learning how words sound: 9-Month-olds use distinct objects as cues to categorize speech information. Cognition, 113(2), 234243. https://doi.org/proxy.library.uu.nl/10.1016/j.cognition.2009.08.010CrossRefGoogle ScholarPubMed
Yu, Y. H., Tessel, C., Han, H., Campanelli, L., Vidal, N., Gerometta, J., Garrido-Nag, K., Datta, H., & Shafer, V. L. (2019). Neural Indices of Vowel Discrimination in Monolingual and Bilingual Infants and Children. Ear and Hearing, 40(6), 13761390. https://doi.org/10.1097/AUD.0000000000000726CrossRefGoogle ScholarPubMed
Zink, I., & Lejaegere, M. (2002). N-CDI Woordenlijst. Acco.Google Scholar
Supplementary material: File

Chen supplementary material

Chen supplementary material

Download Chen supplementary material(File)
File 779 KB