Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-mgjtl Total loading time: 0.266 Render date: 2022-06-27T04:14:22.526Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Visual sequential processing and language ability in children who are deaf or hard of hearing

Published online by Cambridge University Press:  26 February 2019

Michelle A. GREMP*
Affiliation:
Eastern Kentucky University
Joanne A. DEOCAMPO
Affiliation:
Georgia State University
Anne M. WALK
Affiliation:
University of Illinois at Urbana-Champagne
Christopher M. CONWAY
Affiliation:
Boys Town National Research Hospital, Omaha, Nebraska
*
*Corresponding author. College of Education, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, KY 40475. E-mail: michelle.gremp@eku.edu

Abstract

This study investigated the role of sequential processing in spoken language outcomes for children who are deaf or hard of hearing (DHH), ages 5;3–11;4, by comparing them to children with typical hearing (TH), ages 6;3–9;7, on sequential learning and memory tasks involving easily nameable and difficult-to-name visual stimuli. Children who are DHH performed more poorly on easily nameable sequencing tasks, which positively predicted receptive vocabulary scores. Results suggest sequential learning and memory may underlie delayed language skills of many children who are DHH. Implications for language development in children who are DHH are discussed.

Type
Brief Research Reports
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bebko, J. M., & McKinnon, E. E. (1990). The language experience of deaf children: its relation to spontaneous rehearsal in a memory task. Child Development, 62, 1744–52.CrossRefGoogle Scholar
Bharadwaj, S. V., Matzke, P. L., & Daniel, L. L. (2012). Multi-sensory processing in children with cochlear implants. International Journal of Pediatric Otorhinolaryngology, 76(6), 890–5.CrossRefGoogle Scholar
Bharadwaj, S.V., & Mehta, J. A. (2016). An exploratory study of visual sequential processing in children with cochlear implants. International Journal of Pediatric Otorhinolaryngology, 85, 158–65.CrossRefGoogle ScholarPubMed
Blamey, P. J., Sarant, J. Z., Paatsch, L. E., Barry, J. G., Bow, C. P., Wales, R. J., … Tooher, R. (2001). Relationships among speech perception, production, language, hearing loss, and age in children with impaired hearing. Journal of Speech, Language, & Hearing Research, 44, 264–85.CrossRefGoogle ScholarPubMed
Conway, C. M. (2012). Sequential learning. In Seel, R. M. (Ed.), Encyclopedia of the sciences of learning (pp. 3047–50). New York: Springer Publications.CrossRefGoogle Scholar
Conway, C. M., Bauernschmidt, A., Huang, S. S., & Pisoni, D. B. (2010). Implicit statistical learning in language processing: word predictability is the key. Cognition, 114, 356–71.CrossRefGoogle ScholarPubMed
Conway, C. M., Karpicke, J., Anaya, E. M., Henning, S. C., Kronenberger, W. G., & Pisoni, D. B. (2011). Nonverbal cognition in deaf children following cochlear implantation: motor sequencing disturbances mediate language delays. Developmental Neuropsychology, 36, 237–54.CrossRefGoogle ScholarPubMed
Conway, C. M., Pisoni, D. B., Anaya, E. M., Karpicke, J., & Henning, S. C. (2011). Implicit sequence learning in deaf children with cochlear implants. Developmental Science, 14, 6982.CrossRefGoogle ScholarPubMed
Conway, C. M., Pisoni, D. B., & Kronenberger, W. G. (2009). The importance of sound for cognitive sequencing abilities: the auditory scaffolding hypothesis. Current Directions in Psychological Science, 18, 275–9.CrossRefGoogle ScholarPubMed
Dawson, P. W., Busby, P. A., McKay, C. M., & Clark, G. M. (2002). Short-term auditory memory in children using cochlear implants and its relevance to receptive language. Journal of Speech, Language, and Hearing Research, 45, 789801.CrossRefGoogle ScholarPubMed
Deocampo, J. A., Smith, G. N. L., Kronenberger, W. G., Pisoni, D. B., & Conway, C. M. (2018). The role of statistical learning in understanding and treating spoken language outcomes in deaf children with cochlear implants. Language, Speech, and Hearing Services in Schools, 49, 723–39.CrossRefGoogle ScholarPubMed
Dunn, L. M., & Dunn, D. M. (2007). Peabody Picture Vocabulary Test – fourth edition. Minneapolis, MN: NCS Pearson, Inc.Google Scholar
Edwards, L., & Anderson, S. (2014). The association between visual, nonverbal cognitive abilities and speech, phonological processing, vocabulary and reading outcomes in children with cochlear implants. Ear & Hearing, 35, 366–74.CrossRefGoogle ScholarPubMed
Gathercole, S. E., Willis, C. S., Baddeley, A. D., & Emslie, H. (1994). The children's test of nonword repetition: a test of phonological working memory. Memory, 2, 103–27.CrossRefGoogle ScholarPubMed
Geers, A. E., Nicholas, J. G., & Moog, J. S. (2007). Estimating the influence of cochlear implantation on language development in children. Audiological Medicine, 5, 262–73.CrossRefGoogle ScholarPubMed
Hall, M. L., Eigsti, I.-M., Bortfeld, H., & Lillo-Martin, D. (2017). Auditory deprivation does not impair executive function but language deprivation might: evidence from a parent-report measure in deaf native signing children. Journal of Deaf Studies and Deaf Education, 22(1), 921.CrossRefGoogle Scholar
Harris, M. C., Kronenberger, W. G., Gao, S., Hoen, H. M., Miyamoto, R. T., & Pisoni, D. B. (2013). Verbal short-term memory development and spoken language outcomes in deaf children with cochlear implants. Ear and Hearing, 34, 179–92.CrossRefGoogle ScholarPubMed
Johnson, C., & Goswami, U. (2010). Phonological awareness, vocabulary, and reading in deaf children with cochlear implants. Journal of Speech, Language, and Hearing Research, 53, 237–61.CrossRefGoogle ScholarPubMed
Karpicke, J. D., & Pisoni, D. B. (2004). Using immediate memory span to measure implicit learning. Memory & Cognition, 32(6), 956–64.CrossRefGoogle ScholarPubMed
Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jimenez, L., Brown, J., & Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116, 321–40.CrossRefGoogle ScholarPubMed
Kral, A., Kronenberger, W. G., Pisoni, D. B., & O'Donoghue, G. M. (2016). Neurocognitive factors in sensory restoration of early deafness: a connectome model. The Lancet Neurology, 15(6), 610–21.CrossRefGoogle ScholarPubMed
Lederberg, A. R., Schick, B., & Spencer, P. E. (2013). Language and literacy development of deaf and hard-of-hearing children: successes and challenges. Developmental Psychology, 49, 1530.CrossRefGoogle ScholarPubMed
Ling, A. H. (1975). Memory for verbal and nonverbal auditory sequences in hearing-impaired and normal-hearing children. Journal of the American Audiology Society, 1, 3745.Google Scholar
Logan, K., Maybery, M., & Fletcher, J. (1996). The short-term memory of profoundly deaf people for words, signs, and abstract spatial stimuli. Applied Cognitive Psychology, 10, 105–19.3.0.CO;2-4>CrossRefGoogle Scholar
MacSweeney, M., Campbell, R., & Donlan, C. (1996). Varieties of short-term memory coding in deaf teenagers. Journal of Deaf Studies and Deaf Education, 1, 249–62.CrossRefGoogle ScholarPubMed
Marshuetz, C. (2005). Order information in working memory: an integrative review of evidence from brain and behavior. Psychological Bulletin, 131(3), 323–39.CrossRefGoogle ScholarPubMed
McDaniel, E. (1980). Visual memory in the deaf. American Annals of the Deaf, 125, 1720.CrossRefGoogle ScholarPubMed
Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: evidence from performance measures. Cognitive Psychology, 19, 132.CrossRefGoogle Scholar
Page, P. A., Cumming, N., Norris, D., Hitch, G. J., & McNeil, A. M. (2006). Repetition learning in the immediate serial recall of visual and auditory materials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 716–33.Google ScholarPubMed
Parasnis, I., Samar, V. J., Bettger, J. G., & Sathe, K. (1996). Does deafness lead to enhancement of visual spatial cognition in children? Negative evidence from deaf nonsigners. Journal of Deaf Studies and Deaf Education, 1, 146–52.CrossRefGoogle ScholarPubMed
Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: one phenomenon, two approaches. Trends in Cognitive Sciences, 10, 233–8.CrossRefGoogle ScholarPubMed
Pisoni, D. B. (1999). Individual differences in effectiveness of cochlear implants in children who are prelingually deaf: new process measures of performance. Volta Review, 101, 111–65.Google Scholar
Pisoni, D. B., & Cleary, M. (2004). Learning, memory and cognitive processes in deaf children following cochlear implantation. In Zeng, F. G., Popper, A. N., & Fay, R. R. (Eds.), Handbook of auditory research: auditory prosthesis, Vol. 20 (pp. 377426). Berlin: Springer.Google Scholar
Pisoni, D. B., Kronenberger, W. G., Chandramouli, S. H., & Conway, C. M. (2016). Learning and memory processes following cochlear implantation: the missing piece of the puzzle. Frontiers in Psychology, 7:493. doi:10.3389/fpsyg.2016.00493.CrossRefGoogle ScholarPubMed
Pisoni, D. D., & Geers, A. E. (2000). Working memory in deaf children with cochlear implants: correlations between digit span and measures of spoken language processing. Annals of Otology, Rhinology & Laryngology: Supplement, 185, 92–3.CrossRefGoogle ScholarPubMed
Reber, A. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855–63.CrossRefGoogle Scholar
Rosas, R., Ceric, F., Tenorio, M., Mourgues, C., Thibaut, C., Hurtado, E., & Aravena, M. T. (2010). ADHD children outperform normal children in an artificial grammar implicit learning task: ERP and RT evidence. Consciousness and Cognition, 19, 341–51.CrossRefGoogle Scholar
Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70, 2752.CrossRefGoogle ScholarPubMed
Sharma, A., & Dorman, M. (2006). Central auditory development in children with cochlear implants: clinical implications. Advances in Oto-Rhino-Laryngology, 64, 6688.Google ScholarPubMed
Sterritt, G. M., Camp, B. W., & Lipman, B. S. (1966). Effects of early auditory deprivation upon auditory and visual information processing. Perceptual and Motor Skills, 2, 123–30.CrossRefGoogle Scholar
Torkildsen, J., Arciuli, J., Haukedal, C. L., & Wie, O. B. (2018). Does a lack of auditory experience affect sequential learning? Cognition, 170, 123–9.CrossRefGoogle ScholarPubMed
Uddén, J., & Bahlmann, J. (2012). A rostro-caudal gradient of structured sequence processing in the left inferior frontal gyrus. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2023–32.CrossRefGoogle ScholarPubMed
Ulanet, P. G., Carson, C. M., Mellon, N. K., Niparko, J. K., & Ouelette, M. (2014). Correlation of neurocognitive processing subtypes with language performance in young children with cochlear implants. Cochlear Implants International, 15, 230–40.CrossRefGoogle ScholarPubMed
Watson, D. R., Titterington, J., Henry, A., & Toner, J. G. (2007). Auditory sensory memory and working memory processes in children with normal hearing and cochlear implants. Audiology and Neurotology, 12, 6576.CrossRefGoogle ScholarPubMed
Willstedt-Svensson, U., Löfqvist, A., Almqvist, B., & Sahlén, B. (2004). Is age at implant the only factor that counts? The influence of working memory on lexical and grammatical development in children with cochlear implants. International Journal of Audiology, 43(9), 506–15.CrossRefGoogle ScholarPubMed
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Visual sequential processing and language ability in children who are deaf or hard of hearing
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Visual sequential processing and language ability in children who are deaf or hard of hearing
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Visual sequential processing and language ability in children who are deaf or hard of hearing
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *