Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T10:07:31.485Z Has data issue: false hasContentIssue false

Stopping problems with an unknown state

Published online by Cambridge University Press:  09 August 2023

Erik Ekström*
Affiliation:
Uppsala University
Yuqiong Wang*
Affiliation:
Uppsala University
*
*Postal address: Department of Mathematics, Box 256, 751 05 Uppsala, Sweden.
*Postal address: Department of Mathematics, Box 256, 751 05 Uppsala, Sweden.

Abstract

We extend the classical setting of an optimal stopping problem under full information to include problems with an unknown state. The framework allows the unknown state to influence (i) the drift of the underlying process, (ii) the payoff functions, and (iii) the distribution of the time horizon. Since the stopper is assumed to observe the underlying process and the random horizon, this is a two-source learning problem. Assigning a prior distribution for the unknown state, standard filtering theory can be employed to embed the problem in a Markovian framework with one additional state variable representing the posterior of the unknown state. We provide a convenient formulation of this Markovian problem, based on a measure change technique that decouples the underlying process from the new state variable. Moreover, we show by means of several novel examples that this reduced formulation can be used to solve problems explicitly.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chakrabarty, A. and Guo, X. (2012). Optimal stopping times with different information levels and with time uncertainty. In Stochastic Analysis and Applications to Finance: Essays in Honour of Jia-an Yan, pp. 19–38. World Scientific.CrossRefGoogle Scholar
De Angelis, T. (2020). Optimal dividends with partial information and stopping of a degenerate reflecting diffusion. Finance Stoch. 24, 71123.CrossRefGoogle Scholar
De Angelis, T., Gensbittel, F. and Villeneuve, S. (2021). A Dynkin game on assets with incomplete information on the return. Math. Operat. Res. 46, 2860.CrossRefGoogle Scholar
Décamps, J.-P., Mariotti, T. and Villeneuve, S. (2005). Investment timing under incomplete information. Math. Operat. Res. 30, 472500.CrossRefGoogle Scholar
Ekström, E. and Lu, B. (2011). Optimal selling of an asset under incomplete information. Internat. J. Stoch. Anal. 2011, 543590.Google Scholar
Ekström, E. and Vaicenavicius, J. (2016). Optimal liquidation of an asset under drift uncertainty. SIAM J. Financial Math. 7, 357381.CrossRefGoogle Scholar
Ekström, E. and Vannestål, M. (2019). American options and incomplete information. Internat. J. Theoret. Appl. Finance 22, 1950035.CrossRefGoogle Scholar
Engehagen, S., Hornslien, M., Lavrutich, M. and Tønnessen, S. (2021). Optimal harvesting of farmed salmon during harmful algal blooms. Marine Policy 129, 104528.CrossRefGoogle Scholar
Gapeev, P. V. (2012). Pricing of perpetual American options in a model with partial information. Internat. J. Theoret. Appl. Finance 15, 1250010.CrossRefGoogle Scholar
Gapeev, P. V. and Shiryaev, A. N. (2011). On the sequential testing problem for some diffusion processes. Stochastics 83, 519535.CrossRefGoogle Scholar
Glover, K. and Hulley, H. (2022). Short selling with margin risk and recall risk. Internat. J. Theoret. Appl. Finance 25, 2250007.CrossRefGoogle Scholar
Guo, X. and Zhang, Q. (2004). Closed-form solutions for perpetual American put options with regime switching. SIAM J. Appl. Math. 64, 20342049.Google Scholar
Henderson, V., Kladvko, K., Monoyios, M. and Reisinger, C. (2020). Executive stock option exercise with full and partial information on a drift change point. SIAM J. Financial Math. 11, 10071062.CrossRefGoogle Scholar
Johnson, P. and Peskir, G. (2018). Sequential testing problems for Bessel processes. Trans. Amer. Math. Soc. 370, 20852113.CrossRefGoogle Scholar
Klein, M. (2009). Comment on ‘Investment timing under incomplete information’. Math. Operat. Res. 34, 249254.CrossRefGoogle Scholar
Lakner, P. (1995). Utility maximization with partial information. Stoch. Process. Appl. 56, 247273.CrossRefGoogle Scholar
Lempa, J. and Matomäki, P. (2013). A Dynkin game with asymmetric information. Stochastics 85, 763788.CrossRefGoogle Scholar
Liptser, R. S. and Shiryaev, A. N. (2001). Statistics of Random Processes II: Applications, 2nd edn (Stochastic Modelling and Applied Probability 6). Springer, Berlin.Google Scholar
Novikov, A. and Palacios-Soto, J. L. (2020). Sequential hypothesis tests under random horizon. Sequential Anal. 39, 133166.CrossRefGoogle Scholar
Protter, P. E. (2005). Stochastic Integration and Differential Equations, 2nd edn (Stochastic Modelling and Applied Probability 21). Springer, Berlin.Google Scholar
Shiryaev, A. N. (1967). Two problems of sequential analysis. Cybernetics 3, 6369.CrossRefGoogle Scholar
Shiryaev, A. N. (2008). Optimal Stopping Rules (Stochastic Modelling and Applied Probability 8). Springer, Berlin.Google Scholar
Vaicenavicius, J. (2020). Asset liquidation under drift uncertainty and regime-switching volatility. Appl. Math. Optimization 81, 757784.CrossRefGoogle Scholar