Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T09:18:48.313Z Has data issue: false hasContentIssue false

Derivatives pricing via p-optimal martingale measures: some extreme cases

Published online by Cambridge University Press:  14 July 2016

Marina Santacroce*
Affiliation:
Politecnico di Torino
*
Postal address: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy. Email address: marina.santacroce@polito.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In an incomplete financial market in which the dynamics of the asset prices is driven by a d-dimensional continuous semimartingale X, we consider the problem of pricing European contingent claims embedded in a power utility framework. This problem reduces to identifying the p-optimal martingale measure, which can be given in terms of the solution to a semimartingale backward equation. We use this characterization to examine two extreme cases. In particular, we find a necessary and sufficient condition, written in terms of the mean-variance trade-off, for the p-optimal martingale measure to coincide with the minimal martingale measure. Moreover, if and only if an exponential function of the mean-variance trade-off is a martingale strongly orthogonal to the asset price process, the p-optimal martingale measure can be simply expressed in terms of a Doléans-Dade exponential involving X.

Type
Research Article
Copyright
© Applied Probability Trust 2006 

References

Biagini, F., Guasoni, P. and Pratelli, M. (2000). Mean–variance hedging for stochastic volatility models. Math. Finance 10, 109123.Google Scholar
Bismut, J. M. (1973). Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384404.Google Scholar
Chitashvili, R. J. (1983). Martingale ideology in the theory of controlled stochastic processes. In Probability Theory and Mathematical Statistics (Lecture Notes Math. 1021), Springer, New York, pp. 7392.Google Scholar
Chitashvili, R. and Mania, M. (1996). Generalized Itô formula and derivation of Bellman's equation. In Stochastic Processes and Related Topics (Stoch. Monogr. 10), Gordon and Breach, Yverdon, pp. 121.Google Scholar
Delbaen, F. and Schachermayer, W. (1996). The variance-optimal martingale measure for continuous processes. Bernoulli 2, 81105.Google Scholar
Dellacherie, C. and Meyer, P.-A. (1980). Probabilités et Potentiel. Chapitres V à VIII. Théorie des Martingales. Hermann, Paris.Google Scholar
Doléans-Dade, C. and Meyer, P.-A. (1979). Inégalités de normes avec poids. Séminaire de Probabilités XIII, (University of Strasbourg, 1977/8) (Lecture Notes Math. 721), Springer, Berlin, pp. 313331.Google Scholar
El Karoui, N. and Quenez, M.-C. (1995). Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optimization 33, 2966.Google Scholar
Friedman, A. (1975). Stochastic Differential Equations and Applications. Academic Press, New York.Google Scholar
Frittelli, M. (2000). Introduction to a theory of value coherent with the no-arbitrage principle. Finance Stoch. 4, 275297.CrossRefGoogle Scholar
Goll, T. and Rüschendorf, L. (2001). Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Finance Stoch. 5, 557581.Google Scholar
Gourieroux, C., Laurent, J. P. and Pham, H. (1998). Mean–variance hedging and numéraire. Math. Finance 8, 179200.Google Scholar
Grandits, P. and Krawczyk, L. (1998). Closedness of some spaces of stochastic integrals. In Séminaire de Probabilités XXXII (Lecture Notes Math. 1686), Springer, New York, pp. 7385.Google Scholar
Grandits, P. and Rheinländer, T. (2002). On the minimal-entropy martingale measure. Ann. Prob. 30, 10031038.CrossRefGoogle Scholar
Harrison, J. M. and Pliska, S. R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215260.Google Scholar
Jacod, J. (1979). Calcul Stochastique et Problèmes de Martingales (Lecture Notes Math. 714). Springer, Berlin.Google Scholar
Karatzas, I., Lehoczky, J. P., Shreve, S. E. and Xu, G. L. (1991). Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optimization 29, 702730.Google Scholar
Kazamaki, N. (1994). Continuous Exponential Martingales and BMO (Lecture Notes Math. 1579). Springer, Berlin.Google Scholar
Kramkov, D. (1996). Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Prob. Theory Relat. Fields 105, 459479.Google Scholar
Laurent, J. P. and Pham, H. (1999). Dynamic programming and mean-variance hedging. Finance Stoch. 3, 83110.Google Scholar
Liptser, R. S. and Shiryaev, A. N. (1977). Statistics of Random Processes. I. General Theory. Springer, New York.Google Scholar
Liptser, R. S. and Shiryaev, A. N. (1989). Theory of Martingales. Kluwer, Dordrecht.Google Scholar
Mania, M., Santacroce, M. and Tevzadze, R. (2002). A semimartingale backward equation related to the p-optimal martingale measure and the lower price of a contingent claim. In Stochastic Processes and Related Topics (Stoch. Monogr. 12), Taylor and Francis, London, pp. 189212.Google Scholar
Mania, M., Santacroce, M. and Tevzadze, R. (2004). The Bellman equation related to the minimal-entropy martingale measure. Georgian Math. J. 11, 125135.CrossRefGoogle Scholar
Pardoux, E. and Peng, S. G. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14, 5561.CrossRefGoogle Scholar
Pham, H., Rheinländer, T. and Schweizer, M. (1998). Mean-variance hedging for continuous processes: new proofs and examples. Finance Stoch. 2, 173198.Google Scholar
Santacroce, M. (2005). On the convergence of the p-optimal martingale measures to the minimal-entropy martingale measure. Stoch. Anal. Appl. 23, 3154.Google Scholar
Schweizer, M. (1994). Approximating random variables by stochastic integrals. Ann. Prob. 22, 15361575.Google Scholar
Schweizer, M. (1996). Approximation pricing and the variance-optimal martingale measure. Ann. Prob. 24, 206236.Google Scholar