Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T20:39:20.503Z Has data issue: false hasContentIssue false

Conditional law of a branching process observing a subpopulation

Published online by Cambridge University Press:  14 July 2016

Claudia Ceci*
Affiliation:
Università di Chieti
Anna Gerardi*
Affiliation:
Università dell’Aquila
*
Postal address: Dipartimento di Scienze, Facoltà di Economia, Università di Chieti, 65127 Pescara, Italy.
∗∗ Postal address: Dipartimento di Ingegneria Elettrica, Facoltà di Ingegneria, Università dell’Aquila, L’Aquila, Italy. Email address: gerardi@ing.univaq.it

Abstract

The paper is concerned with filtering the cardinality of a branching process observing the cardinality of a subpopulation. In this model, both the processes, state and observation are pure jump processes and may have common jump times. Preliminary properties are studied in the tree framework. A recursive structure for the filtering equation is proved in the supercritical case.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Athreya, K. B., and Ney, P. E. (1972). Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
[2]. Brémaud, P. (1980). Point Processes and Queues. Springer, Berlin.Google Scholar
[3]. Calzolari, A., and Nappo, G. (2000). Il filtro di un modello con dati raggruppati e osservazioni di conteggio. Preliminary version of (2001) The filtering problem in a model with grouped data and counting observation times. Preprint, Dipartimento di Matematica, Università di Roma ‘La Sapienza’.Google Scholar
[4]. Ceci, C., and Gerardi, A. (1997). Filtering of a branching process given its split times. J. Appl. Prob. 55, 2750.Google Scholar
[5]. Ceci, C., and Gerardi, A. (1999). Optimal control and filtering of the reproduction law of a branching process. Acta Appl. Math. 34, 565574.Google Scholar
[6]. Ceci, C., and Gerardi, A. (2000). Filtering of a Markov jump process with counting observation. Appl. Math. Optimization 42, 118.CrossRefGoogle Scholar
[7]. Ceci, C., and Gerardi, A. (2001). Nonlinear filtering equation of a jump process with counting observations. Acta Appl. Math. 66, 139154.CrossRefGoogle Scholar
[8]. Ceci, C., and Mazliak, L. (1992). Une propriété forte de branchements. C. R. Acad. Sci. Paris Math. 315, 851853.Google Scholar
[9]. Ceci, C., and Mazliak, L. (1994). Controlled trees. Rebrape 8, 93105.Google Scholar
[10]. Ceci, C., Gerardi, A., and Mazliak, L. (1996). Some results about stopping times on the marked tree space. Theory Prob. Appl. 41, 578590.Google Scholar
[11]. Chauvin, B. (1991). Product martingales and stopping lines for branching Brownian motion. Ann. Prob. 19, 11951205.CrossRefGoogle Scholar
[12]. Elliott, R. J. (1982). Stochastic Calculus and Applications. Springer, Berlin.Google Scholar
[13]. Fan, K. (1996). On a new approach to the solution of the nonlinear filtering equation for jump processes. Prob. Eng. Inf. Sci. 10, 153163.CrossRefGoogle Scholar
[14]. Jacod, J., (1975). Multivariate point processes: predictable projection. Z. Wahrscheinlichkeitsth. 31, 235253.CrossRefGoogle Scholar
[15]. Kliemann, W., Koch, G., and Marchetti, F. (1990). On the unnormalized solution of the filtering problem with counting process observations. IEEE Trans. Inf. Theory 36, 14151425.CrossRefGoogle Scholar
[16]. Kurtz, T. G., and Ocone, D. (1988). Unique characterization of conditional distribution in nonlinear filtering. Ann. Prob. 16, 80107.CrossRefGoogle Scholar
[17]. Neveu, J. (1986). Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré Prob. Statist. 22, 199207.Google Scholar