Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T08:31:21.942Z Has data issue: false hasContentIssue false

Aging notions, stochastic orders, and expected utilities

Published online by Cambridge University Press:  18 October 2023

Jianping Yang*
Affiliation:
University of Science and Technology of China, Zhejiang Sci-Tech University
Weiwei Zhuang*
Affiliation:
University of Science and Technology of China
Taizhong Hu*
Affiliation:
University of Science and Technology of China
*
*Postal address: Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China
*Postal address: Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China
*Postal address: Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

There are some connections between aging notions, stochastic orders, and expected utilities. It is known that the DRHR (decreasing reversed hazard rate) aging notion can be characterized via the comparative statics result of risk aversion, and that the location-independent riskier order preserves monotonicity between risk premium and the Arrow–Pratt measure of risk aversion, and that the dispersive order preserves this monotonicity for the larger class of increasing utilities. Here, the aging notions ILR (increasing likelihood ratio), IFR (increasing failure rate), IGLR (increasing generalized likelihood ratio), and IGFR (increasing generalized failure rate) are characterized in terms of expected utilities. Based on these observations, we recover the closure properties of ILR, IFR, and DRHR under convolution, and of IGLR and IGFR under product, and investigate the closure properties of the dispersive order, location-independent riskier order, excess wealth order, the total time on test transform order under convolution, and the star order under product. We have some new findings.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alzaid, A. A. (1988). Length-biased orderings with applications. Prob. Eng. Inf. Sci. 2, 329341.CrossRefGoogle Scholar
An, M. Y. (1998). Logconcavity versus logconvexity: A complete characterization. J. Econom. Theory 80, 350369.CrossRefGoogle Scholar
Bagnoli, M. and Bergstrom, T. (2005). Log-concave probability and its applications. Econom. Theory 26, 445469.CrossRefGoogle Scholar
Banciu, M. and Mirchandani, P. (2006). New results concerning probability distributions with increasing generalized failure rates. Operat. Res. 61, 925931.CrossRefGoogle Scholar
Barlow, R. E. and Proschan, F. (1981). Statistical Theory of Reliability and Life Testing. To Begin With, Silver Spring, MD.Google Scholar
Belzunce, F. (1999). On a characterization of right spread order by the increasing convex order. Statist. Prob. Lett. 45, 103110.CrossRefGoogle Scholar
Belzunce, F., Martínez-Riquelme, C. and Mulero, J. (2016). An Introduction to Stochastic Orders. Academic Press, Amsterdam.Google Scholar
Belzunce, F., Ruiz, J. M. and Ruiz, M. C. (2002). On preservation of some shifted and proportional orders by systems. Statist. Prob. Lett. 60, 141154.CrossRefGoogle Scholar
Bickel, P. J. and Lehmann, E. L. (1976). Descriptive statistics for non-parametric models. III. Dispersion. Ann. Statist. 4, 11391158.Google Scholar
Bobkov, S. and Madiman, M. (2011). Concentration of the information in data with log-concave distributions. Ann. Prob. 39, 15281543.CrossRefGoogle Scholar
Chateauneuf, A., Cohen, M. and Meilijson, I. (2004). Four notions of mean-preserving increase in risk, risk attitudes and applications to the rank-dependent expected utility model. J. Math. Econom. 40, 547571.CrossRefGoogle Scholar
Chateauneuf, A., Cohen, M. and Meilijson, I. (2005). More pessimism than greediness: A characterization of monotone risk aversion in the rank-dependent expected utility model. Econom. Theory 25, 649667.CrossRefGoogle Scholar
Chen, X. et al. (2021). The discrete moment problem with nonconvex shape constraints. Operat. Res. 69, 279296.CrossRefGoogle Scholar
Dharmadhikari, S. and Joag-dev, K. (1988). Unimodality, Convexity and Applications. Academic Press, New York.Google Scholar
Fagiuoli, E., Pellerey, F. and Shaked, M. (1999). A characterization of the dilation order and its applications. Statist. Papers 40, 393406.CrossRefGoogle Scholar
Fernández-Ponce, J. M., Kochar, S. C. and Muñoz-Pérez, J. (1998). Partial orderings of distributions based on right spread functions. J. Appl. Prob. 35, 221228.CrossRefGoogle Scholar
Fradelizi, M., Madiman, M. and Wang, L. (2016). Optimal concentration of information content for logconcave densities. In High-Dimensional Probability VII, eds Houdré, C., Mason, D. M., Reynaud-Bouret, P. and Rosiński, J., Springer, New York, pp. 45–60.Google Scholar
Hu, T., Chen, J. and Yao, J. (2006). Preservation of the location independent risk order under convolution. Insurance Math. Econom. 38, 406412.CrossRefGoogle Scholar
Hu, T., Nanda, A. K., Xie, H. and Zhu, Z. (2004). Properties of some stochastic orders: A unified study. Naval Res. Logistics 51, 193216.CrossRefGoogle Scholar
Hu, T., Wang, Y. and Zhuang, W. (2012). New properties of the total time on test transform order. Prob. Eng. Inf. Sci. 26, 4360.CrossRefGoogle Scholar
Jewitt, I. (1987). Risk aversion and the choice between risky prospects: The preservation of comparative statics results. Rev. Econom. Studies 54, 7385.CrossRefGoogle Scholar
Jewitt, I. (1989). Choosing between risky prospects: The characterization of comparative statics results, and location independent risk. Manag. Sci. 35, 6070.CrossRefGoogle Scholar
Kirkegaard, R. (2012). A mechanism design approach to ranking asymmetric auctions. Econometrica 80, 23492364.Google Scholar
Kirkegaard, R. (2014). Ranking asymmetric auctions: Filling the gap between a distributional shift and stretch. Games Econom. Behavior 85, 6069.CrossRefGoogle Scholar
Kochar, S. C., Li, X. and Shaked, M. (2002). The total time on test transform and the excess wealth stochastic orders of distributions. Adv. Appl. Prob. 34, 826845.CrossRefGoogle Scholar
Kochar, S. C., Li, X. and Xu, M. (2007). Excess wealth order and sample spacings. Statist. Methodology 4, 385392.CrossRefGoogle Scholar
Lai, C.-D. and Xie, M. (2006). Stochastic Ageing and Dependence for Reliability. Springer, New York.Google Scholar
Landsberger, M. and Meilijson, I. (1994). The generating process and an extension of Jewitt’s location independent risk concept. Manag. Sci. 40, 662669.CrossRefGoogle Scholar
Lariviere, M. A. (1999). Supply chain contracting and coordination with stochastic demand. In Quantitative Models for Supply Chain Management, eds Tayur, S., Ganeshan, R. and Magazine, M., Kluwer, Boston, MA, pp. 233–268.CrossRefGoogle Scholar
Lariviere, M. A. (2006). A note on probability distributions with increasing generalized failure rates. Operat. Res. 54, 602604.CrossRefGoogle Scholar
Lariviere, M. A. and Porteus, E. L. (2001). Selling to a newsvendor: An analysis of price-only contracts. Manuf. Serv. Oper. Manag. 3, 293305.CrossRefGoogle Scholar
Levy, H. (2016). Stochastic Dominance, 3rd edn. Springer, New York.CrossRefGoogle Scholar
Mao, T. and Hu, T. (2012). Characterization of left-monotone risk aversion in the RDEU model. Insurance Math. Econom. 50, 413422.CrossRefGoogle Scholar
Marsiglietti, A. and Kostina, V. (2018). A lower bound on the differential entropy of log-concave random random vectors with applications. Entropy 20 185.CrossRefGoogle ScholarPubMed
Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. Wiley, Chichester.Google Scholar
Ninh, A., Shen, Z. M. and Lariviere, M. A. (2020). Concavity and unimodality of expected revenue under discrete willingness to pay distributions. Prod. Oper. Manag. 29, 788796.CrossRefGoogle Scholar
Oliveira, P. E. and Torrado, N. (2015). On proportional reversed failure rate class. Statist. Papers 56, 9991013.CrossRefGoogle Scholar
Ortega-Jiménez, P., Pellerey, F., Sordo, M. A. and Suárez-Llorens, A. (2023). Note on Efron’s monotonicity property under given copula structures. In Building Bridges between Soft and Statistical Methodologies for Data Science (Adv. Intelligent Syst. Comp. 1433), Springer, Cham, pp. 303–310.CrossRefGoogle Scholar
Paul, A. (2005). A note on closure properties of failure rate distributions. Operat. Res. 53, 733734.CrossRefGoogle Scholar
Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica 32, 122136.CrossRefGoogle Scholar
Ramos, H. and Sordo, M. A. (2001). The proportional likelihood ratio order and applications. Qüestiio 25, 211223.Google Scholar
Saumard, A. and Wellner, J. A. (2014). Log-concavity and strong log-concavity: A review. Statist. Surv. 8, 45114.CrossRefGoogle ScholarPubMed
Shaked, M. and Shanthikumar, J. G. (1998). Two variability orders. Prob. Eng. Inf. Sci. 12, 123.CrossRefGoogle Scholar
Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.CrossRefGoogle Scholar
Singpurwalla, N. D. and Gordon, A. S. (2014). Auditing Shaked and Shanthikumar’s ‘excess wealth’. Ann. Operat. Res. 212, 319.CrossRefGoogle Scholar
Sordo, M. A. (2008). Characterizations of classes of risk measures by dispersive orders. Insurance Math. Econom. 42, 10281034.CrossRefGoogle Scholar
Spizzichino, F. (2001). Subjective Probability Models for Lifetimes. Chapman and Hall/CRC, Boca Raton, FL.CrossRefGoogle Scholar
Toscani, G. (2015). A strengthened entropy power inequality for log-concave densities. IEEE Trans. Inf. Theory 61, 65506559.CrossRefGoogle Scholar
Walther, G. (2009). Inference and modeling with log-concave distributions. Statist. Sci. 24, 319327.CrossRefGoogle Scholar
Yu, Y. (2010). Relative log-concavity and a pair of triangle inequalities. Bernoulli 16, 459470.CrossRefGoogle Scholar
Ziya, S., Ayhan, H. and Foley, R. D. (2004). Relationships among three assumptions in revenue management. Operat. Res. 52, 804809.CrossRefGoogle Scholar