Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7mfl8 Total loading time: 0.188 Render date: 2021-12-07T02:24:37.379Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Dynamic ultrastructure of mouse pulmonary alveoli revealed by an in vivo cryotechnique in combination with freeze-substitution

Published online by Cambridge University Press:  19 October 2000

ICHIRO TAKAYAMA
Affiliation:
Department of Anatomy, Yamanashi Medical University, Yamanashi, Japan
NOBUO TERADA
Affiliation:
Department of Anatomy, Yamanashi Medical University, Yamanashi, Japan
TAKESHI BABA
Affiliation:
Department of Anatomy, Yamanashi Medical University, Yamanashi, Japan
HIDEHO UEDA
Affiliation:
Department of Anatomy, Yamanashi Medical University, Yamanashi, Japan
YASUHISA FUJII
Affiliation:
Department of Anatomy, Yamanashi Medical University, Yamanashi, Japan
YASUKO KATO
Affiliation:
Department of Anatomy, Yamanashi Medical University, Yamanashi, Japan
SHINICHI OHNO
Affiliation:
Department of Anatomy, Yamanashi Medical University, Yamanashi, Japan
Get access

Abstract

A morphological approach to cell dynamics is usually difficult, since routine preparative techniques for electron microscopy always induce artifacts due to cessation of the blood supply into organs. An in vivo cryotechnique followed by the freeze-substitution method probably reduces such problems. It was applied for examining the pulmonary alveoli of BALB/c mice in vivo. The following ultrastructural features were revealed. (1) A surfactant layer provided a continuous covering to the alveolar epithelium. (2) Pleural epithelial cells, alveolar cells and endothelial cells contained many small vesicles and pits. In the alveolar epithelium, they were often localised near microtubules. (3) Typical lamellar structures in large alveolar epithelial cells were rarely detected. (4) Circulating erythrocytes with various shapes were observed in branching blood capillaries. (5) A close association between erythrocytes and the endothelium was seen at the peripheral alveolar septum. Such ultrastructural arrangements may be appropriate for the physiological functions of the pulmonary alveoli, such as exchanges of gases or materials in vivo.

Type
Research Article
Copyright
© Anatomical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dynamic ultrastructure of mouse pulmonary alveoli revealed by an in vivo cryotechnique in combination with freeze-substitution
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dynamic ultrastructure of mouse pulmonary alveoli revealed by an in vivo cryotechnique in combination with freeze-substitution
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dynamic ultrastructure of mouse pulmonary alveoli revealed by an in vivo cryotechnique in combination with freeze-substitution
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *