Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-28T07:18:43.026Z Has data issue: false hasContentIssue false

Variation in nutrient content of feedingstuffs rich in protein and reassessment of the chemical method for metabolizable energy estimation for poultry

Published online by Cambridge University Press:  27 March 2009

G. N. Lodhi
Affiliation:
Department of Animal Science, Punjab Agricultural University, Ludhiana, India
Daulat Singh
Affiliation:
Department of Animal Science, Punjab Agricultural University, Ludhiana, India
J. S. Ichhponani
Affiliation:
Department of Animal Science, Punjab Agricultural University, Ludhiana, India

Summary

A series of five metabolism trials was made to determine apparent nitrogen digestibility and metabolizable energy (ME) contents of protein rich feedingstuffs. The mean nitrogen digestibilities of fish meal, groundnut, mustard, sesame and cottonseed cakes were 66, 69, 68, 57 and 40%, respectively. Corresponding values for metabolizable energy values were 1820, 2460, 2330, 1870 and 1530 kcal/kg, respectively. The metabolizable energy contents of coconut cake, niger cake and blood meal were 1190, 2360 and 2190 kcal/kg, respectively. The quantity of protein, its digestibility and crude fibre content in the cakes are the prime factors for this trend in MB. Simple and multiple regression equations were derived from biologically assayed metabolizable energy and chemically analysed energy-yielding nutrient contents of the feedingstuffs. The simple regression equation is:

ME kcal/kg = 32·95 (% crude protein + % ether extract × 2·25

+ % available carbohydrate)–29·20.

The multiple regression equation is:

ME kcal/kg = 370·29 + (24·47 × % crude protein)

+ (65·77 × % ether extract)

+ (44·07 × % available carbohydrate)

- (8·15 × % crude fibre).

The correlation coefficients of simple and multiple regression equations were 0·72 and 0·73, respectively, indicating that there is very little advantage for prediction in using the multiple regression equation. The usefulness of the equation for routine checking of poultry feeds for ME is apparent since the nutrients required to predict metabolizable energy can be analysed within a short period of time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ananthraman, K., Carpenter, K. J. & Nesheim, M. C. (1968). The nutritional value of poor proteins fed at high level. 2. Species differences. British Journal of Nutrition 22, 199205.CrossRefGoogle Scholar
Apandi, M., Atmadilaga, D. & Bird, H. R. (1974). Indonesian fish meals as poultry feed ingredients. Effects of species and spoilage. World's Poultry Science Journal 30, 176–82.CrossRefGoogle Scholar
A.O.A.C. (1970). Official Methods of Analysis, 9th ed.Washington, D.C.Google Scholar
Astwood, E. B., Greer, M. A. & Ettlinger, M. G. (1949). L-5-vinyl-2-thio-oxazolidenethione, an antithyroid compound from the yellow turnip and from brassica seeds. Journal of Biological Chemistry 181, 121–30.CrossRefGoogle ScholarPubMed
Bolton, W. (1967). Poultry Nutrition. Ministry of Agriculture, Fisheries and Food. Bull. no. 174, London. (Cited by P. Vohra, 1972, World's Poultry Science Journal 28, 204.)Google Scholar
Carpenter, K. J. & Clegg, K. M. (1956). The metabolizable energy of poultry feedingstuffs in relation to their chemical composition. Journal of the Science of Food and Agriculture 7, 4551.CrossRefGoogle Scholar
Chopra, A. K., Malik, N. S., Makkar, G. S. & Ichhponani, J. S. (1971). Evaluation of poultry feeds in India. I. Proximate analysis, energy values and basic amino acid contents of feed ingredients. Journal of Research (Ludhiana) 8, 232–6.Google Scholar
Clandinin, D. R., Bayly, L. & Caballero, A. (1966). Rapeseed meal studies. 5. Effects of (±)-5-vinyl-2- oxazolidinethione, a goitrogen in rapeseed meal, on the rate of growth and thyroid function of chicks. Poultry Science 45, 833–8.CrossRefGoogle Scholar
Clandinin, D. R. & Heard, J. (1968). Tannins in prepress-solvent and solvent processed rapeseed meal. Poultry Science 47, 688–9.CrossRefGoogle Scholar
Clegg, K. M. (1956). The application of the anthrone reagent to the estimation of starch in cereals. Journal of the Science of Food and Agriculture 7, 40–4.CrossRefGoogle Scholar
Couch, J. R., Chang, W. Y. & Lyman, C. M. (1955). The effect of free gossypol on chick growth. Poultry Science 34, 178–83.CrossRefGoogle Scholar
Crampton, E. W. & Harris, L. E. (1969). Applied Animal Nutrition, 2nd ed.San Francisco: W. H. Freeman and Co.Google Scholar
Foster, W. H. (1968). Variation between and within birds in the estimation of the metabolizable energy content of diets for laying hens. Journal of Agricultural Science, Cambridge 71, 153–9.CrossRefGoogle Scholar
Fraps, G. S. (1946). Bulletin, Texas Agricultural Experiment Station, no. 678 (Cited by K. J. Carpenter, 1962, Nutrition of Pigs and Poultry pp. 29. London: Butterworths.)Google Scholar
Heywang, B. W. & Bird, H. R. (1955). Relationship between the weight of chicks and levels of dietary free gossypol supplied by different cottonseed products. Poultry Science 34, 1239–47.CrossRefGoogle Scholar
Hill, F. W. (1965). Utilization of energy for growth by chicks. In Energy Metabolism (ed. Blaxter, K. L.), pp. 327–32. London: Academic Press.Google Scholar
Hill, F. W. & Anderson, D. L. (1958). Comparison of metabolizable energy and productive energy determinations with growing chicks. Journal of Nutrition 64, 587603.CrossRefGoogle ScholarPubMed
Hill, F. W. & Dansky, L. M. (1954). Studies of the energy requirements of chickens. I. The effect of dietary energy level on growth and feed consumption. Poultry Science 33, 112–19.CrossRefGoogle Scholar
Hill, F. W. & Totsuka, K. (1964). Studies of metabolizable energy of cottonseed meals for chicks, with particular reference to the effects of gossypol. Poultry Science 43, 362–70.CrossRefGoogle Scholar
Ichhponani, J. S., Chopra, A. K., Makkar, G. S. & Malik, N. S. (1971). Evaluation of poultry feeds in India. 2. Proximate analysis, energy values and basic amino acid contents of different poultry mashes. Journal of Research (Ludhiana) 8, 343–6.Google Scholar
Ichhponani, J. S. & Lodhi, G. N. (1973 a). Balanced and economical ration for poultry. A Critical Appraisal. Third Animal Nutrition Research Worker's Conference, Jabalpur (India).Google Scholar
Ichhponani, J. S. & Lodhi, G. N. (1973 b). High energy rations for poultry and different methods for energy estimation and suggestions for a suitable method. Short Term Course on Poultry Nutrition, Feeding and Feed Processing, pp. 3341. United Province, India.Google Scholar
Kubota, D. & Morimoto, H. (1965). Nutritive value of feedstuffs for poultry and reliability of digestible nutrients formula feeds calculated from the digestible crude protein and TDN contents of ingredients. Japanese Poultry Science 2, 63–8.CrossRefGoogle Scholar
Kumar, R., Aggarwal, O. P., Rao, P. V., Sidhu, G. S. & Negi, S. S. (1967). Determination of metabolizable energy of some poultry feeds in India. Indian Journal Poultry Science 2, 1318.Google Scholar
Lassen, S., Bacon, E. K. & Dunn, H. J. (1949). The relationship of nutritive value of condensed fish solubles to quality of raw materials. Poultry Science 28, 134–40.CrossRefGoogle Scholar
Lodhi, G. N. & Ichhponani, J. S. (1973). Use of mustard cake in poultry ration. Short Term Course on Poultry Nutrition, Feeding and Feed Processing, pp. 6673. United Province, India.Google Scholar
Lodhi, G. N., Malik, N. S. & Ichhponani, J. S. (1974). Metabolizable energy, nitrogen absorbability and feeding value of expeller processed mustard cake for chicks. British Poultry Science 15, 459–65.CrossRefGoogle Scholar
Lodhi, G. N., Renner, R. & Clandinin, D. R. (1969 a). Studies on the metabolizable energy of rapeseed meal for growing chickens and laying hens. Poultry Science 48, 964–70.CrossRefGoogle ScholarPubMed
Lodhi, G. N., Renner, R. & Clandinin, D. R. (1969 b). Available carbohydrate in rapeseed meal as determined by chemical and chick bioassay method. Journal of Nutrition 99, 413–18.CrossRefGoogle Scholar
Lodhi, G. N., Renner, R. & Clandinin, D. R. (1970). Factors affecting the ME value of rapeseed meal. 2. Nitrogen absorbability. Poultry Science 49, 991–9.CrossRefGoogle Scholar
Manwatkar, S. G., Netke, S. P. & Sathe, B. S. (1972). Studies on nutritive value of Ramtil cake for laying poultry. Second All India Poultry Science Symposium, Ludhiana (Abstract), p. 24.Google Scholar
Morimoto, H., Kubota, D., Ariyoshi, S. & Hizikuro, S. (1961). Relationship of TDN digestible energy, metabolizable energy and productive energy and reliability of calculated TDN. Bull. natn. Inst. agric. Sci. Tokyo, ser. 20, 157–65. (Cited by P. Vohra, 1966, World's Poultry Science Journal 22, 6.)Google Scholar
Nesheim, M. C. & Carpenter, K. J. (1967). The digestion of heat damaged protein. British Journal of Nutrition 21, 399411.CrossRefGoogle ScholarPubMed
Potter, L. M. & Matterson, L. D. (1960). Metabolizable energy of feed ingredients for the growing chicks. Poultry Science 39, 781–2.CrossRefGoogle Scholar
Potter, L. M., Pudelkiewcz, W. J., Webster, L. & Matterson, L. D. (1962). Metabolizable energy and digestibility evaluation of fish meal for chickens. Poultry Science 41, 1745–52.CrossRefGoogle Scholar
Rao, P. V. & Clandinin, D. R. (1970). Effect of method of determination on the metabolizable energy of rapeseed meal. Poultry Science 49, 1069–74.CrossRefGoogle Scholar
Renner, R. & Hill, F. W. (1960). Studies of the effect of heat treatment on the metabolizable energy value of soybean and extracted soybean flakes for the chick. Journal of Nutrition 70, 219–25.CrossRefGoogle ScholarPubMed
Sibbald, I. R., Czarnocki, J., Slinger, S. J. & Ashton, G. C. (1963). The prediction of the metabolizable energy content of poultry feedingstuffs from a knowledge of their chemical composition. Poultry Science 42, 486–92.CrossRefGoogle Scholar
Sibbald, I. R. & Slinger, S. J. (1962). The metabolizable energy of materials fed to growing chicks. Poultry Science 41, 1612–13.CrossRefGoogle Scholar
Sibbald, I. R. & Slinger, S. J. (1963). A biological assay for metabolizable energy in poultry feed ingredients together with findings which demonstrate some of the problems associated with the evaluation of fats. Poultry Science 42, 313–25.CrossRefGoogle Scholar
Sibbald, I. R., Summers, J. D. & Slinger, S. J. (1960). Factors affecting the metabolizable energy content of poultry feeds. Poultry Science 39, 544–66.CrossRefGoogle Scholar
Sidhu, G. S., Negi, S. S. & Bhatia, I. S. (1969). Evaluation of feedstuffs available in India for protein quality and energy value. Final report of PL-480 Project, Punjab Agricultural University, Ludhiana.Google Scholar
Snedecor, W. G. & Cochran, W. G. (1968). Statistical Methods. 6th ed.Bombay: Oxford and IBH Publishing Company.Google Scholar
Titus, H. W. (1961). The Scientific Feeding of Chickens. 4th ed. The Interstate Danville, Illinois.Google Scholar
Yoshida, M., Hoshii, H. & Morimoto, H. (1962). Nutritive value of sweet potato as carbohydrate source in poultry feeds. 4. Biological estimation of available energy of sweet potato by starting chicks. Agricultural Biological Chemistry, Japan 26, 679–82.Google Scholar