Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-27T21:33:26.699Z Has data issue: false hasContentIssue false

Variability in the critical phase of stem elongation of perennial ryegrass genotypes: a source for breeding progress?

Published online by Cambridge University Press:  06 October 2015

I. ULLMANN*
Affiliation:
Department of Grass and Forage Science / Organic Agriculture, Institute of Crop Science and Plant Breeding, Kiel University, Hermann-Rodewald-Straße 9, D-24118 Kiel, Germany Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Kiel University, Hermann-Rodewald-Straße 9, D-24118 Kiel, Germany
A. HERRMANN
Affiliation:
Department of Grass and Forage Science / Organic Agriculture, Institute of Crop Science and Plant Breeding, Kiel University, Hermann-Rodewald-Straße 9, D-24118 Kiel, Germany
M. HASLER
Affiliation:
Lehrfach Variationsstatistik, Kiel University, Hermann-Rodewald-Straße 9, D-24118 Kiel, Germany
D. CAI
Affiliation:
Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Kiel University, Hermann-Rodewald-Straße 9, D-24118 Kiel, Germany
F. TAUBE
Affiliation:
Department of Grass and Forage Science / Organic Agriculture, Institute of Crop Science and Plant Breeding, Kiel University, Hermann-Rodewald-Straße 9, D-24118 Kiel, Germany
*
*To whom all correspondence should be addressed. Email: iullmann@gfo.uni-kiel.de

Summary

Phenological development and its variation during reproductive growth have important effects on the yield and quality of forage grasses. In perennial ryegrass (Lolium perenne L.) genetic variation in heading date is well recognized, but there are no reliable studies about the variability in the length of the stem elongation phase. To determine the variation in phenological traits of single plants of perennial ryegrass genotypes, a field trial was conducted over three growing seasons (2011–2013) using plant material from eight different ecotype populations, sampled from old permanent grassland swards in Northern Germany. In addition to the phenological stages of jointing, heading and flowering, the critical phase of stem elongation was considered as a new phenological trait. It was hypothesized that the length of the critical phase between jointing and heading differs significantly among genotypes and thus offers a new tool for selecting for specific purposes, e.g. adaption to changing climatic conditions, cutting or grazing as well as yield and quality. The study revealed significant genotypic variation in the observed traits, which was highest for the critical phase (GCV = 0·21). Moderate heritability in jointing (h2 = 0·72) revealed a large environmental impact. In contrast, high heritability (h2 > 0·86) in heading, flowering and the critical phase imply a strong genetic effect. Moderate to high genotypic and phenotypic coefficients of correlation revealed a substantial linkage among the phenological traits. Results are discussed in the context of providing different approaches and strategies in forage crop production, especially with regard to regional weather conditions and future climate change. Significant differences among the tested ecotype populations indicate that existing diversity in permanent grassland can provide source material for further progress in grass breeding.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aamlid, T. S., Heide, O. M. & Boelt, B. (2000). Primary and secondary induction requirements for flowering of contrasting European varieties of Lolium perenne . Annals of Botany 86, 10871095.Google Scholar
Amasino, R. M. & Michaels, S. D. (2010). The timing of flowering. Plant Physiology 154, 516520.Google Scholar
Araus, J. L., Slafer, G. A., Reynolds, M. P. & Royo, C. (2002). Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany 89, 925940.CrossRefGoogle Scholar
Armstead, I. P., Turner, L. B., Farrell, M., Skøt, L., Gomez, P., Montoya, T., Donnison, I. S., King, I. P. & Humphreys, M. O. (2004). Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theoretical and Applied Genetics 108, 822828.Google Scholar
Bolaric, S., Barth, S., Melchinger, A. E. & Posselt, U. K. (2005 a). Genetic diversity in European perennial ryegrass cultivars investigated with RAPD markers. Plant Breeding 124, 161166.CrossRefGoogle Scholar
Bolaric, S., Barth, S., Melchinger, A. E. & Posselt, U. K. (2005 b). Molecular genetic diversity within and among German ecotypes in comparison to European perennial ryegrass cultivars. Plant Breeding 124, 257262.Google Scholar
Bueckert, R. A. & Clarke, J. M. (2013). Review: annual crop adaption to abiotic stress on the Canadian prairies: six case studies. Canadian Journal of Plant Science 93, 375385.CrossRefGoogle Scholar
Burns, G. A., Gilliland, T. J., Grogan, D., Watson, S. & O'Kiely, P. (2013). Assessment of herbage yield and quality traits of perennial ryegrasses from a national variety evaluation scheme. Journal of Agricultural Science, Cambridge 151, 331346.CrossRefGoogle Scholar
Cashman, P., Gilliland, T. J., O'Donovan, M. & McEvoy, M. (2014). Population selection within perennial ryegrass cultivars under simulated grazing. Grassland Science in Europe 19, 833835.Google Scholar
Casler, M. D. (2001). Breeding forage crops for increased nutritional value. Advances in Agronomy 71, 51107.Google Scholar
Casler, M. D. & van Santen, E. (2010). Breeding objectives in forages. In Fodder Crops and Amenity Grasses. Handbook of Plant Breeding, Vol. 5 (Eds Boller, B., Posselt, U. K. & Veronesi, F.), pp. 115136. New York: Springer.Google Scholar
Cockram, J., Jones, H., Leigh, F. J., O'Sullivan, D., Powell, W., Laurie, D. A. & Greenland, A. J. (2007). Control of flowering time in temperate cereals: genes, domestication and sustainable productivity. Journal of Experimental Botany 58, 12311244.Google Scholar
Colasanti, C. & Coneva, V. (2009). Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiology 149, 5662.Google Scholar
Comstock, R. E. & Robinson, H. F. (1952). Genetic parameters, their estimation and significance. In Proceedings of the Sixth International Grassland Congress Volume 1, pp. 284291. Pennsylvania: Pennsylvania State College.Google Scholar
Cooper, J. P. (1951). Studies on growth and development in Lolium: II. pattern of bud development of the shoot apex and its ecological significance. Journal of Ecology 39, 228270.Google Scholar
Cooper, J. P. (1952). Studies on growth and development in Lolium. III. Influence of season and latitude on ear emergence. Journal of Ecology 40, 352379.CrossRefGoogle Scholar
Cooper, J. P. (1959). Selection and population structure in Lolium. III. Selection for date of ear emergence. Heredity 13, 461479.Google Scholar
Cooper, J. P. (1960). Short-day and low-temperature induction in Lolium . Annals of Botany 24, 232246.Google Scholar
Emanuelsson, U. (2008). Semi-natural grasslands in Europe today. Grassland Science in Europe 13, 38.Google Scholar
Evans, L. T. (1960). The influence of temperature on flowering in species of Lolium and in Poa pratensis . Journal of Agricultural Science, Cambridge 54, 410416.Google Scholar
Falconer, D. S. (1989). Introduction to Quantitative Genetics, 3rd edn. Harlow, Essex, UK/New York: Longmans Green/John Wiley & Sons.Google Scholar
Fischer, R. A. & Edmeades, G. O. (2010). Breeding and cereal yield progress. Crop Science 50 (Suppl. 1), S85S98.Google Scholar
German Federal Plant Variety Office (2011). Beschreibende Sortenliste – Futtergräser, Esparsette, Klee, Luzerne. Hannover, Germany: Bundessortenamt, ISSN 1612–894X.Google Scholar
Gilliland, T. J., Barrett, P. D., Mann, R. L., Agnew, R. E. & Fearon, A. M. (2002). Canopy morphology and nutritional quality traits as potential grazing value indicators for Lolium perenne varieties. Journal of Agricultural Science, Cambridge 139, 257273.CrossRefGoogle Scholar
Gustavsson, A.-M. (2011). A developmental scale for perennial forage grasses based on the decimal code framework. Grass and Forage Science 66, 93108.CrossRefGoogle Scholar
Halligan, E. A., Forde, M. B. & Warrington, I. J. (1993). Discrimination of ryegrasses by heading date under various combinations of vernalization and daylength: perennial ryegrass varieties. Plant Varieties and Seeds 6, 151160.Google Scholar
Hayward, M. D., McAdam, N. J., Jones, J. G., Evans, C., Evans, G. M., Forster, J. W., Ustin, A., Hossain, K. G., Quader, B., Stammers, M. & Will, J. K. (1994). Genetic markers and the selection of quantitative traits in forage grasses. Euphytica 77, 269275.Google Scholar
Herrmann, A. (1999). Modellierung von Ertragsverlauf und Qualitätsentwicklung verschiedener Pflanzenteile von Einjährigem Weidelgras (Lolium multiflorum Lam. ssp. gaudini). Ph.D. Thesis, University of Giessen, Germany.Google Scholar
Herrmann, A., Kelm, M., Kornher, A. & Taube, F. (2005). Performance of grassland under different cutting regimes as affected by sward composition, nitrogen input, soil conditions and weather – a simulation study. European Journal of Agronomy 22, 141158.CrossRefGoogle Scholar
Hu, T., Li, H., Li, D., Sun, J. & Fu, J. (2011). Assessing genetic diversity of perennial ryegrass (Lolium perenne L.) from four continents by inter-simple sequence repeat (ISSR) markers. African Journal of Biotechnology 10, 1936519374.Google Scholar
Humphreys, M. O. (1999). The contribution of conventional plant breeding to forage crop improvement. In Proceedings of the 18th International Grasslands Congress Volume 3 (Eds Buchanan-Smith, J. G., Bailey, L. D. & McCaughey, P.), pp. 7177. Winnipeg, Manitoba and Saskatoon, Canada and Calgary, Canada: Association Management Centre.Google Scholar
Humphreys, M. O. (2003). Utilization of plant genetic resources in breeding for sustainability. Plant Genetic Resources Characterization and Utilization 1, 1118.Google Scholar
Humphreys, M., Feuerstein, U., Vandewalle, M. & Baert, J. (2010). Ryegrasses. In Fodder Crops and Amenity Grasses. Handbook of Plant Breeding, Vol. 5 (Eds Boller, B., Posselt, U. K. & Veronesi, F.), pp. 211260. New York: Springer.Google Scholar
IUSS Working Group WRB (2014). World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, Italy: FAO.Google Scholar
Jones, M. M., Turner, N. C. & Osmond, C. B. (1981). Mechanisms of drought resistance. In The Physiology and Biochemistry of Drought Resistance in Plants (Eds Paleg, L. G. & Aspinall, D.), pp. 1537. Sydney, Australia: Academic Press.Google Scholar
Kempton, R. A. (1984). The design and analysis of unreplicated trials. Vorträge für Pflanzenzüchtung 7, 219242.Google Scholar
Kempton, R. A. & Gleeson, A. C. (1997). Unreplicated trials. In Statistical Methods for Plant Variety Evaluation (Eds Kempton, R. A., Fox, P. N. & Cerezo, M.), pp. 86100. London, UK: Chapman & Hall.Google Scholar
Kigel, J., Konsens, I., Rosen, N., Rotem, G., Kon, A. & Fragmann-Sapir, O. (2011). Relationships between flowering time and rainfall gradients across Mediterranean-desert transects. Israel Journal of Ecology and Evolution 57, 91109.Google Scholar
Knapp, S. J. & Bridges, W. C. Jr (1987). Confidence interval estimators for heritability for several mating and experiment designs. Theoretical and Applied Genetics 73, 759763.Google Scholar
Levitt, J. (1972). Response of Plants to Environmental Stresses, 1st edn. New York: Academic Press.Google Scholar
Marum, P., Thomas, I. D. & Veteläinen, M. (1998). Summary of germplasm holdings. In Report of a Working Group on Forages, Sixth Meeting, 6–8 March 1997, Beitostølen, Norway (Compilers Maggioni, L., Marum, P., Sackville Hamilton, R., Thomas, I., Gass, T. & Lipman, E.), pp. 184189. Beitostølen, Norway: International Plant Genetic Resources Institute.Google Scholar
Matthes, K. (1986). Beziehungen zwischen Sortencharakter und den Gehalten wasserlöslicher Kohlenhydrate sowie verschiedener Strukturbestandteile bei der Art Lolium perenne L. Ph.D. Thesis, University of Hohenheim, Germany.Google Scholar
McDonagh, J., McEvoy, M., O'Donovan, M. & Gillilan, T. J. (2014). Genetic gain in yield of perennial ryegrass (Lolium perenne), Italian ryegrass (Lolium multiflorum Lam.) and hybrid ryegrass (Lolium×boucheanum Kunth) cultivars in Northern Ireland Recommended Lists 1972–2013. Grassland Science in Europe 19, 836839.Google Scholar
McGrath, S., Hodkinson, T. R., Charles, T. M., Zen, D. G. & Barth, S. (2010). Variation in inflorescence characters and inflorescence development in ecotypes and cultivars of Lolium perenne L. Grass and Forage Science 65, 398409.Google Scholar
Mode, C. J. & Robinson, H. F. (1959). Pleiotropism and the genetic variance and covariance. Biometrics 15, 518537.Google Scholar
Moehring, J., Williams, E. R. & Piepho, H.-P. (2014). Efficiency of augmented p-rep design in multi-environmental trials. Theoretical and Applied Genetics 127, 10491060.Google Scholar
Petersen, H.-W. (1989). Ertragsbildung ausgewählter Grünlandgräser im Nachwuchs in Abhängigkeit vom Zeitpunkt der Nutzung des Primäraufwuchses. Ph.D. Thesis, University of Kiel, Germany.Google Scholar
Pollock, C. J., Cairns, A. J., Sims, I. M. & Houseley, T. L. (1996). Fructans as reserve carbohydrates in crop plants. In Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships (Eds Zamski, E. & Schaffer, A. A.), pp. 97113. New York: Marcel Dekker, Inc.Google Scholar
Posselt, U. K. (2000). Genetische Diversität bei Wildformen und Zuchtsorten von Lolium perenne L. Schriftenreihe für Vegetationskunde 32, 7985.Google Scholar
R Development Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rognli, O. A., Fjellheim, S., Pecetti, L. & Boller, B. (2013). Semi-natural grasslands as a source of genetic diversity. Grassland Science in Europe 18, 303313.Google Scholar
Sampoux, J.-P., Baudouin, P., Bayle, B., Béguier, V., Bourdon, P., Chosson, J.-F., Deneufbourg, F., Galbrun, C., Ghesquière, M., Noël, D., Pietraszek, W., Tharel, B. & Viguié, A. (2011). Breeding perennial grasses for forage usage: an experimental assessment of trait changes in diploid perennial ryegrass (Lolium perenne L.) cultivars released in the last four decades. Field Crops Research 123, 117129.Google Scholar
Schnyder, H. (1993). The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling – a review. New Phytologist 123, 233245.Google Scholar
Singh, R. K. & Chaudhary, B. D. (1985). Biometrical Methods in Quantitative Analysis. New Delhi, India: Kalayani Publishers.Google Scholar
Taube, F. (1986). Wachstumsanalytische Untersuchungen an Deutschem Weidelgras und Knaulgras im Vegetationsablauf unter besonderer Berücksichtigung des Schnittzeitpunktes im 1. Aufwuchs. Ph.D. Thesis, University of Kiel, Germany.Google Scholar
Taube, F. (1990). Growth characteristics of contrasting varieties of perennial ryegrass. Journal of Agronomy and Crop Science 165, 159170.CrossRefGoogle Scholar
Taube, F., Wulfes, R. & Kornher, A. (1992). Seasonal variation in nitrogen use efficiency of contrasting varieties of perennial ryegrass. In European Grassland Federation: Proceedings of the 14th General Meeting of the European Grassland Federation (Ed. Pulli, S. K.), pp. 538542. Lahti, Finland: European Grassland Federation.Google Scholar
Utz, H. F. (1993). PLABSTAT: A Computer Program for Statistical Analysis of Plant Breeding Experiments. Germany: Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim. Available from: https://plant-breeding.uni-hohenheim.de/83113 (verified 6 August 2015).Google Scholar
van Wijk, A. J. P. & Reheul, D. (1991). Achievements in fodder crops breeding in maritime Europe. In Fodder Crops Breeding: Achievements, Novel Strategies and Biotechnology: Proceedings of the 16th Meeting of the Fodder Crops Section of Eucarpia (Eds den Nijs, A. P. M. & Elgersma, A.), pp. 1318. Wageningen, Netherlands: Pudoc.Google Scholar
Wilkins, P. W. & Humphreys, M. O. (2003). Progress in breeding perennial forage grasses for temperate agriculture. Journal of Agricultural Science, Cambridge 140, 129150.Google Scholar
Wulfes, R. (1993). Wachstumsanalytische Untersuchungen zur Dynamik der Qualitätsentwicklung von Deutschem Weidelgras und Knaulgras im Vegetationsablauf in Abhängigkeit von der Stickstoffdüngung und vom Standort. Ph.D. Thesis, University of Kiel, Germany.Google Scholar
Wulfes, R., Nyman, P. & Kornher, A. (1999). Modelling non-structural carbohydrates in forage grasses with weather data. Agricultural Systems 61, 116.Google Scholar