Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T00:32:22.166Z Has data issue: false hasContentIssue false

Studies on associative nitrogen fixation by antibiotic-resistant mutants of Azospirillum brasilense with genotypes of lentil (Lens culinaris) Rhizobium strains in calcareous soil

Published online by Cambridge University Press:  27 March 2009

R. Rai
Affiliation:
Rajendra Agricultural University, Dholi Campus, Muzaffarpur 843121, Bihar, India

Summary

Nitrosoguanidine-induced mutation frequencies for resistance to streptomycin, spectinomycin, erythromycin and novomycin were studied in Azospirillum brasilense. Lentil inoculated with A. brasilense and its mutants and Rhizobium strains produced increased nodule dry weight, nitrogenase activity of nodules and roots and grain yield compared with an uninoculated control.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bulow, J. F. W. Von & Dobereiner, J. (1975). Potential for nitrogen fixation in maize genotypes in Brazil. Proceedings of the National Academy of Sciences, U.S.A. 72, 23892393.Google Scholar
Burris, R. H., Okon, Y. & Albrecht, S. L. (1977). Physiological studies of Spirillum lipoferum. In Genetic Engineering for Nitrogen Fixation (ed. Hollaender, A.), pp. 445450. New York: Plenum Press.Google Scholar
Dobereiner, J. (1977). Present and future opportunities to improve the nitrogen nutrition of crops through biological fixation. In 'Biological Nitrogen Fixation in Farming Systems of the Tropics (ed. Ayanaba, A. and Dart, P. J.), pp. 312. New York: John Wiley.Google Scholar
Dobereiner, J. & Baldani, V. (1979). Selective infection of maize roots by streptomycin-resistant AzospiriUum lipoferumand other bacteria. Canadian Journal of Microbiology 25, 12641269.CrossRefGoogle ScholarPubMed
Dobereiner, J. & Day, J. M. (1976). Physiological aspects of N2-fixation by a Spirillumfrom Digitaria roots. Soil Biology and Biochemistry 8, 4550.Google Scholar
Dobereiner, J. & Depolli, H. (1980). Diazotrophic rhizocoenoses. In Symposium on Nitrogen Fixation, Succex Annal Proceedings of Phytochemical Society of Europe (ed. Stewart, W. D. P. and Gallon, J. R.), pp. 301333. London: Academic Press.Google Scholar
Dobereiner, J., Narriel, I. E. & Nery, M. (1976). Ecological distribution of Spirillum lipoferum Beijerinck. Canadian Journal of Microbiology 22, 14641473.Google Scholar
Gibson, A. H. (1963). Physical environment and nitrogen fixation. 1. The effect of root temperature and recently nodulated Trifolium subterraneum L. Australian Journal of Biological Science 16, 2842.Google Scholar
Lakshmi, V., Satyanarayana Rao, A., Vijayalakshmi, K., Lakshmi-Kumari, M., Tilak, K. V. B. R. & Subba Rao, N. S. (1977). Establishment and survival of Spirillum lipoferum. Proceedings of the Indian Academy of Sciences 86 B, 379384.Google Scholar
Lakshmi-Kumari, M., Kavimandan, S. K. & Subba Rao, N. S. (1976). Occurrence of nitrogen fixing Spirillumin roots of rice, sorghum, maize and other plants. Indian Journal of Experimental Biology 14, 638648.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Nelson, N. (1944). A photometric adaption of the somogyi method for the determination of glucose. Journal of Biological Chemistry 153, 375380.CrossRefGoogle Scholar
Norris, D. O. & Date, A. R. (1976). Legume bacteriology. Commonwealth Bureau of Pastures and Field Crops Bulletin No. 151. England.Google Scholar
Okon, Y., Albrecht, S. L. & Burris, R. H. (1977). Methods for growing Spirillum lipoferum and counting it in pure culture and in association with plant. Applied Environmental Microbiology 33, 8588.Google Scholar
Rai, R., Prasad, V. & Shukla, I. C. (1984). Interaction between finger millet (Eleusine coracana) genotypes and drug-resistant mutants of Azospirillum brasilense in calcareous soil. Journal of Agricultural Science, Cambridge 102, 521529.Google Scholar
Schwinghamer, E. A. (1967). Effectiveness of Rhizobium as modified by mutation for resistance to antibiotics. Journal of Microbiology and Serology 33, 121136.Google Scholar
Singh, C. S. & Subba Rao, N. S. (1979). Associative effect of Azospirillum brasilense with Bhizobium japonicum on yield of soybean (Olycine max). Plant and Soil 53, 387392.Google Scholar
Subba Rao, N. S., Tilak, K. V. B. R., Lakshmikttmari, M. & Singh, C. S. (1979). Azospirillum, a new bacterial fertilizer for tropical crops. Science Reporter, C.S.I.R. India 16 (10), 690692.Google Scholar
Tarrand, J. J., Krieg, N. R. & Dobereiner, J. (1978). A taxonomic study of Spirillum lipoferum group with description of a new genus Azospirillum gen.nov. and two species, Azospirillum lipoferum (Beijerinck) Comb.nov. and Azospirillum brasilense sp.nov. Canadian Journal of Microbiology 24, 967980.Google Scholar
Tien, T. M., Gaskin, M. H. & Hubell, D. H. (1979). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet. Applied Environmental Microbiology 37, 10121024.Google Scholar