Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T02:46:57.799Z Has data issue: false hasContentIssue false

Short-term effects of biogas residue application on yield performance and N balance parameters of maize in different cropping systems

Published online by Cambridge University Press:  24 July 2012

A. HERRMANN*
Affiliation:
Institute of Crop Science and Plant Breeding, Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University, Hermann-Rodewald-Str. 9, 24118 Kiel, Germany
K. SIELING
Affiliation:
Institute of Crop Science and Plant Breeding, Agronomy and Crop Science, Christian-Albrechts-University, Hermann-Rodewald-Str. 9, 24118 Kiel, Germany
B. WIENFORTH
Affiliation:
Institute of Crop Science and Plant Breeding, Agronomy and Crop Science, Christian-Albrechts-University, Hermann-Rodewald-Str. 9, 24118 Kiel, Germany
F. TAUBE
Affiliation:
Institute of Crop Science and Plant Breeding, Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University, Hermann-Rodewald-Str. 9, 24118 Kiel, Germany
H. KAGE
Affiliation:
Institute of Crop Science and Plant Breeding, Agronomy and Crop Science, Christian-Albrechts-University, Hermann-Rodewald-Str. 9, 24118 Kiel, Germany
*
*To whom all correspondence should be addressed. Email: aherrmann@email.uni-kiel.de

Summary

The expansion of biogas production in Germany poses a challenge in terms of the production of substrates for co-fermentation and the efficient use of biogas residues as fertilizers. At present there is limited information on the fertilizer value of biogas residues from energy-cropping systems. A 2-year field experiment was conducted at two sites in northern Germany to quantify the yield, nitrogen (N) concentration and the N balance of maize (Zea mays L.) grown in different crop rotations: (i) maize monoculture (R1), (ii) maize – whole-crop wheat followed by Italian ryegrass as catch crop (R2) and (iii) maize – grain wheat followed by mustard as catch crop (R3). Crops were fertilized with different levels of biogas residues, cattle slurry, pig slurry, or mineral N fertilizer, which allowed quantification of the apparent N recovery (ANR) of the fertilizer types tested. The results revealed that crop rotation in interaction with N amount had a pronounced effect on the yield of maize. Maximum yield of 19·1 t dry matter (DM)/ha, corresponding to biogas production of 6685 m3N CH4/ha, was achieved in maize monoculture on a sandy loam site. Maize grown in R3 showed the lowest N response but had the highest yield under low N supply, whereas R2 generally had the lowest yield and N content. Differences in yield performance were reflected in the N balances, differing by 50 kg N/ha between R1 and R2, whereas R3 produced the lowest yield at low N supply. The carry-over effects from the preceding catch crops in R2 and R3, however, reduce the meaningfulness of the simple N balance. Nitrogen fertilizer type showed no interaction with crop rotation. Biogas residue application resulted in similar maize yielding performance to pig slurry and cattle slurry. However, relative N fertilizer value (RNFV) was 30% higher for biogas residue at optimal N supply, i.e. the minimum N input to achieve maximum DM yield.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acutis, M., Ducco, G. & Grignani, C. (2000). Stochastic use of the LEACHN model to forecast nitrate leaching in different maize cropping systems. European Journal of Agronomy 13, 191206.CrossRefGoogle Scholar
Ball Coelho, B. R., Roy, R. C. & Bruin, A. J. (2006). Nitrogen recovery and partitioning with different rates and methods of sidedressed manure. Soil Science Society of America Journal 70, 464473.CrossRefGoogle Scholar
Bechini, L. & Marino, P. (2009). Short-term nitrogen fertilizing value of liquid dairy manures is mainly due to ammonium. Soil Science Society of America Journal 73, 21592169.CrossRefGoogle Scholar
Brenner, A. & Clemens, J. (2005). Vergleich der Stoffflüsse mit ökologischer Bilanzierung von zwei Kofermentationsanlagen. Landwirtschaftliche Fakultät der Universität Bonn, Schriftenreihe des Lehr- und Forschungsschwerpunktes USL, Nr. 128. Bonn, Germany: Universität Bonn.Google Scholar
Butterbach-Bahl, K., Leible, L., Kälber, S., Kappler, G. & Kiese, R. (2010). Treibhausgasbilanz nachwachsender Rohstoffe. Karlsruhe Institute of Technology, KIT Scientific Reports 7556. Karlsruhe, Germany: KIT Scientific Publishing.Google Scholar
Carter, M. S., Hauggaard-Nielsen, H., Johansen, A. & Ambus, P. (2009). Consequences of agro-biofuel production for greenhouse gas emissions. In NJF Report, Vol. 5, No. 3 (Eds Nordic Association of Agricultural Scientists), pp. 3435. Stockholm, Sweden: NJF General Secretariat.Google Scholar
Cerrato, M. E. & Blackmer, A. M. (1990). Comparison of models for describing corn yield response to nitrogen fertilizer. Agronomy Journal 82, 138143.CrossRefGoogle Scholar
Chantigny, M. H., Angers, D. A., Rochette, P., Bélanger, G., Massé, D. & Cote, D. (2007). Gaseous N emissions and forage N uptake on soils fertilized with raw and treated swine manure. Journal of Environmental Quality 36, 18641872.CrossRefGoogle ScholarPubMed
Chantigny, M. H., Angers, D. A., Bélanger, G., Rochette, P., Eriksen-Hamel, N. S., Bittman, S., Buckley, K. E., Massé, D. I. & Gasser, M.-O. (2008). Yield and nutrient export of grain corn fertilized with raw and treated liquid swine manure. Agronomy Journal 100, 13031309.CrossRefGoogle Scholar
Cherry, K. A., Shepherd, M., Withers, P. J. A. & Mooney, S. J. (2008). Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Science of the Total Environment 406, 123.CrossRefGoogle Scholar
Constantin, J., Mary, B., Laurent, F., Aubrion, G., Fontaine, A., Kerveillant, P. & Beaudoin, N. (2009). Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agriculture, Ecosystems and Environment 135, 268278.CrossRefGoogle Scholar
Constantin, J., Beaudoin, N., Laurent, F., Cohan, J.-P., Duyme, F. & Mary, B. (2011). Cumulative effects of catch crops on nitrogen uptake, leaching and net mineralization. Plant and Soil 341, 137154.CrossRefGoogle Scholar
Coque, M., Bertin, P., Hirel, B. & Gallai, A. (2006). Genetic variation and QTLs for 15N natural abundance in a set of maize recombinant inbred lines. Field Crops Research 97, 310321.CrossRefGoogle Scholar
De Boer, H. C. (2008). Co-digestion of animal slurry can increase short-term nitrogen recovery by crops. Journal of Environmental Quality 37, 19681973.CrossRefGoogle ScholarPubMed
Dittert, K., Senbayram, M., Wienforth, B., Kage, H. & Mühling, K. H. (2009). Greenhouse gas emissions in biogas production systems. In Proceedings of the International Plant Nutrition Colloquium XVI (Ed. Brown, P.). Davis, CA, USA: UC Davis. Available online at: http://www.escholarship.org/uc/item/18p5q83f (verified 23 May 2012).Google Scholar
European Union (EU) (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009. Official Journal of the European Union L140, 1662.Google Scholar
Fachverband Biogas (2011). Biogas Segment Statistics 2011. Freising, Germany: Fachverband Biogas. Available online at: http://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen (verified 23 May 2012).Google Scholar
FNR (Fachagentur Nachwachsende Rohstoffe) (2011). Daten und Fakten. http://www.nachwachsenderohstoffe.de/service/daten-und-fakten/anbau/ (verified 23 May 2012).Google Scholar
Francis, G. S., Bartley, K. M. & Tabley, F. J. (1998). The effect of winter cover crop management on nitrate leaching losses and crop growth. Journal of Agricultural Science, Cambridge 131, 299308.CrossRefGoogle Scholar
Gericke, D. (2009). Measurement and Modelling of Ammonia Emissions after Field Application of Biogas Slurries. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung 65. Kiel, Germany: Instituts für Pflanzenbau und Pflanzenzüchtung.Google Scholar
Giller, K. E. (2002). Targeting management of organic resources and mineral fertilizers: can we match scientists’ fantasies with farmers’ realities. In Integrated Plant Nutrient Management in Sub-Saharan Africa (Eds Vanlauwe, B., Diels, J., Sanginga, N. & Merckx, R.), pp. 155171. Wallingford, UK: CAB International.Google Scholar
Greiff, K., Weber-Blaschke, G., Faulstich, M. & v. Haaren, C. (2010). Environmentally friendly cultivation of energy crops – proposal for a premium differentiating region and crop species (in German with English abstract). Naturschutz und Landschaftsplanung 42, S101S107.Google Scholar
Griffin, T. S., He, Z. & Honeycutt, C. W. (2005). Manure composition affects net transformation of nitrogen from dairy manures. Plant and Soil 273, 2938.CrossRefGoogle Scholar
Grignani, C., Zavattaro, L., Sacco, D. & Monaco, S. (2007). Production, nitrogen and carbon balance of maize-based forage systems. European Journal of Agronomy 26, 442453.CrossRefGoogle Scholar
Gunnarsson, A., Bengtsson, F. & Caspersen, S. (2010). Use efficiency of nitrogen from biodigested plant material by ryegrass. Journal of Plant Nutrition and Soil Science 173, 113119.CrossRefGoogle Scholar
Gutser, R., Ebertseder, T., Weber, A., Schraml, M. & Schmidhalter, U. (2005). Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. Journal of Plant Nutrition and Soil Science 168, 439446.CrossRefGoogle Scholar
Halvorson, A. D., Schweissing, F. C., Bartolo, M. E. & Reule, C. A. (2005). Corn response to nitrogen fertilization in a soil with high residual nitrogen. Agronomy Journal 97, 12221229.CrossRefGoogle Scholar
Heggenstaller, A. H., Liebman, M. & Anex, R. P. (2009). Growth analysis of biomass production in sole-crop and double-crop corn systems. Crop Science 49, 22152224.CrossRefGoogle Scholar
Helffrich, D. & Oechsner, H. (2003). The Hohenheim biogas yield test. Landtechnik 58, 148149.Google Scholar
Henke, J., Breustedt, G., Sieling, K. & Kage, H. (2007). Impact of uncertainty on the optimum nitrogen fertilization rate and agronomic, ecological and economic factors in an oilseed rape based crop rotation. Journal of Agricultural Science, Cambridge 145, 455468.CrossRefGoogle Scholar
Hillier, J., Hawes, C., Squire, G., Hilton, A., Wale, S. & Smith, P. (2009). The carbon footprints of food crop production. International Journal of Agricultural Sustainability 7, 107118.CrossRefGoogle Scholar
Hjorth, M., Christensen, K. V., Christensen, M. L. & Sommer, S. G. (2010). Solid-liquid separation of animal slurry in theory and practice. A review. Agronomy for Sustainable Development 30, 153180.CrossRefGoogle Scholar
Jaynes, D. B. (2011). Confidence bands for measured economically optimal nitrogen rates. Precision Agriculture 12, 196213.CrossRefGoogle Scholar
Johann Heinrich von Thünen-Institut (2009). Biogas-Messprogramm II. Gülzow-Prüzen, Germany: Fachagentur Nachwachsende Rohstoffe. Available online at: http://mediathek.fnr.de/broschuren/bioenergie/biogas/biogas-messprogramm-ii-61-biogasanlagen-im-vergleich.html (verified 23 May 2012).Google Scholar
Johnson, J. M.-F., Coleman, M. D., Gesch, R., Jaradat, A., Mitchell, R., Reicosky, D. & Wilhelm, W. W. (2007 a). Biomass-bioenergy crops in the United States: A changing paradigm. Americas Journal of Plant Science and Biotechnology 1, 128.Google Scholar
Johnson, J. M.-F., Franzluebbers, A. J., Lachnicht Weyers, S. & Reicosky, D. C. (2007 b). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution 150, 107124.CrossRefGoogle ScholarPubMed
Kage, H., Dittert, K., Gericke, D., Herrmann, A., Pacholski, A., Senbayram, M., Sieling, K., Svoboda, N., Taube, F. & Wienforth, B. (2009). Bewertung von Ertragspotential und Umwelteffekten von Anbausystemen durch Experiment und Modell: Ergebnisse und Erfahrungen aus dem Projekt ‘Biogas Expert’. Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften 21, 16. Available online at: http://www.gpw.uni-bonn.de/pdf/publikation/Tagungsband_2009.pdf (verified 23 May 2012).Google Scholar
Kapuinen, P. & Regina, K. (2010). The effect of anaerobic digestion on fertilizing properties of pig slurry. In Treatment and Use of Organic Residues in Agriculture: Challenges and Opportunities towards Sustainable Management. Proceedings of ‘RAMIRAN 2010’, Lisbon 13–15 Sep 2010, Portugal (Eds Cláudia Marques dos Santos Cordovil, S. C. & Ferreira, L.), article no. 107. Lisbon, Portugal: RAMIRAN. Available online at: http://www.ramiran.net/ramiran2010/start.html (verified 23 May 2012).Google Scholar
Kim, K.-I., Clay, D. E., Carlson, C. G., Clay, S. A. & Trooien, T. (2008). Do synergistic relationships between nitrogen and water influence the ability of corn to use nitrogen derived from fertilizer and soil? Agronomy Journal 100, 551556.CrossRefGoogle Scholar
Kolář, L., Kužel, S., Peterka, J., Štindl, P. & Plát, V. (2008). Agrochemical value of organic matter of fermenter wastes in biogas production. Plant, Soil and Environment 54, 321328.CrossRefGoogle Scholar
Kramberger, B., Gselman, A., Janzekovic, M., Kaligaric, M. & Bracko, B. (2009). Effects of cover crops on soil mineral nitrogen and on the yield and nitrogen content of maize. European Journal of Agronomy 31, 103109.CrossRefGoogle Scholar
Laloy, E. & Bielders, C. L. (2010). Effect of intercropping period management on runoff and erosion in a maize cropping system. Journal of Environmental Quality 39, 10011008.CrossRefGoogle Scholar
Liedgens, M., Soldati, A. & Stamp, P. (2004). Interactions of maize and Italian ryegrass in a living mulch system: (1) Shoot growth and rooting patterns. Plant and Soil 262, 191203.CrossRefGoogle Scholar
Loria, E. R., Sawyer, J. E., Barker, D. W., Lundvall, J. P. & Lorimor, J. C. (2007). Use of anaerobically digested swine manure as a nitrogen source in corn production. Agronomy Journal 99, 11191129.CrossRefGoogle Scholar
Ma, B. L., Dwyer, L. M. & Gregorich, E. G. (1999). Soil nitrogen amendment effects on nitrogen uptake and grain yield of maize. Agronomy Journal 91, 650656.CrossRefGoogle Scholar
Möller, K. & Stinner, W. (2009). Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). European Journal of Agronomy 30, 116.CrossRefGoogle Scholar
Monaco, S., Sacco, D., Pelissetti, S., Dinuccio, E., Balsari, P., Rostami, M. & Grignani, C. (2012). Laboratory assessment of ammonia emission after application of treated and untreated manures. The Journal of Agricultural Science, Cambridge 150, 6573.CrossRefGoogle Scholar
Mooleki, S. P., Schoenau, J. J., Hultgreen, G., Wen, G. & Charles, J. L. (2002). Effect of rate, frequency and method of liquid swine manure application on soil nitrogen availability, crop performance and N use efficiency in east central Saskatchewan. Canadian Journal of Soil Science 82, 457467.CrossRefGoogle Scholar
Morvan, T. & Nicolardot, B. (2009). Role of organic fractions on C decomposition and N mineralization of animal wastes in soil. Biology and Fertility of Soils 45, 477486.CrossRefGoogle Scholar
Murphy, D. V., Macdonald, A. J., Stockdale, E. A., Goulding, K. W. T., Fortune, S., Gaunt, J. L., Poulton, P. R., Wakefield, J. A., Webster, C. P., Wilmer, W. S. (2000). Soluble organic nitrogen in agricultural soils. Biology and Fertility of Soils 30, 374387.CrossRefGoogle Scholar
Nannen, D. U., Herrmann, A., Loges, R., Dittert, K. & Taube, F. (2011). Recovery of mineral fertiliser N and slurry N in continuous silage maize using the 15N and difference methods. Nutrient Cycling in Agroecosystems 89, 269280.CrossRefGoogle Scholar
Näsholm, T., Kielland, K. & Ganeteg, U. (2009). Uptake of organic nitrogen by plants. New Phytologist 182, 3148.CrossRefGoogle ScholarPubMed
Nelson, L. A., Voss, R. D. & Pesek, J. T. (1985). Agronomic and statistical evaluation of fertilizer response. In Fertilizer Technology and Use, 3rd edn (Ed. Engelstad, O. P.), pp. 5390. Madison, WI, USA: ASA.Google Scholar
Nevens, F. & Reheul, D. (2001). Crop rotation versus monoculture; yield, N yield and ear fraction of silage maize at different levels of mineral N fertilization. NJAS – Wageningen Journal of Life Sciences 49, 405425.CrossRefGoogle Scholar
Ohl, S. & Hartung, E. (2010). Comparative assessment of different methods to determine the biogas yield. In Proceedings of the International Conference on Agricultural Engineering: AgEng 2010 (Ed. IRSTEA), Clermont-Ferrand, France, 6–8 Sep 2010. Article no. Ref109. Clermont-Ferrand, France: IRSTEA. Available online at: http://www.irstea.fr/en/research/scientific-conferences/ageng-conference-2010 (verified 23 May 2012).Google Scholar
Peters, K. & Stoumann Jensen, L. (2011). Biochemical characteristics of solid fractions from animal slurry separation and their effects on C and N mineralisation in soil. Biology and Fertility of Soils 47, 447455.CrossRefGoogle Scholar
Peu, P., Birgand, F. & Martinez, J. (2007). Long-term fate of slurry derived nitrogen in soil: A case study with a macro-lysimeter experiment having received high loads of pig slurry (Solepur). Bioresource Technology 98, 32283234.CrossRefGoogle Scholar
Rinnofner, T., Friedel, J. K., De Kruijff, R., Pietsch, G. & Freyer, B. (2008). Effect of catch crops on N dynamics and following crops in organic farming. Agronomy for Sustainable Development 28, 551558.CrossRefGoogle Scholar
Saarijärvi, K. & Virkajärvi, P. (2009). Nitrogen dynamics of cattle dung and urine patches on intensively managed boreal pasture. Journal of Agricultural Science, Cambridge 147, 479491.CrossRefGoogle Scholar
SAS Institute (2004). Base SAS 9·1 Procedures Guide. Cary, NC: SAS Institute.Google Scholar
Schröder, J. J. & Dilz, K. (1987). Cattle slurry and farmyard manure as fertilizers for forage maize. In Animal Manure on Grassland and Fodder Crops: Fertilizer or Waste? (Eds Van der Meer, H. G., Unwin, R. J., Van Dijk, T. A. & Ennik, G. C.), pp. 134156. Developments in Plant and Soil Sciences vol. 30. Dordrecht, The Netherlands: Martinus Nijhoff Publishers.Google Scholar
Schröder, J. J., Van Dijk, W. & De Groot, W. J. M. (1996). Effects of cover crops on the nitrogen fluxes in a silage maize production system. Netherlands Journal of Agricultural Science 44, 293315.CrossRefGoogle Scholar
Schröder, J. J., Jansen, A. G. & Hilhorst, G. J. (2005). Long-term nitrogen supply from cattle slurry. Soil Use and Management 21, 196204.CrossRefGoogle Scholar
Schröder, J. J., Uenk, D. & Hilhorst, G. J. (2007). Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant and Soil 299, 8399.CrossRefGoogle Scholar
Shenk, J. S. & Westerhaus, M. O. (1991). Population structuring of near infrared spectra and modified partial least square regression. Crop Science 31, 15481555.CrossRefGoogle Scholar
Sieling, K. (2004). Growth stage-specific application of slurry and mineral N to oilseed rape, wheat and barley. Journal of Agricultural Science, Cambridge 142, 495502.CrossRefGoogle Scholar
Sommer, S. G., Jensen, L. S., Clausen, S. B. & Søgaard, H. T. (2006). Ammonia volatilization from surface-applied livestock slurry as affected by slurry composition and slurry infiltration depth. Journal of Agricultural Science, Cambridge 144, 229235.CrossRefGoogle Scholar
Sørensen, P. & Møller, H. B. (2009). Fate of nitrogen in pig and cattle slurries applied to the soil-crop system. In Anaerobic Digestion: Opportunities for Agriculture and Environment (Eds Adani, F., Schievano, A. & Boccasile, G.), pp. 2737. Milan, Italy: DiProVe University of Milan.Google Scholar
Stevens, W. B., Hoeft, R. G. & Mulvaney, R. L. (2005). Fate of nitrogen-15 in a long-term nitrogen rate study: II. Nitrogen uptake efficiency. Agronomy Journal 97, 10461053.CrossRefGoogle Scholar
Svoboda, N. (2011). Auswirkungen der Gärrestapplikation auf das Stickstoff-Auswaschungspotential von Anbausystemen zur Substratproduktion. Series: Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung 76. Kiel, Germany: Christian-Albrechts-University Kiel.Google Scholar
Svoboda, N., Wienforth, B., Sieling, K., Kage, H., Taube, F. & Herrmann, A. (2010). Biogas-Expert: Sustainable biomethane production in Northern Germany – nitrogen leaching after application of biogas-residue. In Proceedings of the 23rd General Meeting of the European Grassland Federation, Kiel, Germany, August 29th – September 2nd 2010 (Eds Schnyder, H., Isselstein, J., Taube, F., Auerswald, K., Schellberg, J., Wachendorf, M., Herrmann, A., Gierus, M., Wrage, N. & Hopkins, A.), pp. 298300. Series: Grassland Science in Europe no. 15. Göttingen, Germany: Universität Göttingen.Google Scholar
Thorup-Kristensen, K. (1993). The effect of nitrogen catch crops on the nitrogen nutrition of a succeeding crop. I. Effects through mineralization and pre-emptive competition. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science 43, 7481.Google Scholar
Thorup-Kristensen, K. & Dresboll, D. B. (2010). Incorporation of nitrogen catch crops influences the N effect for the succeeding crop. Soil Use and Management 26, 2735.CrossRefGoogle Scholar
Thorup-Kristensen, K., Magid, J. & Stoumann Jensen, L. (2003). Catch crops and green manures as biological tools in nitrogen management in temperate zones. Advances in Agronomy 79, 227302.CrossRefGoogle Scholar
Torstensson, G. & Aronsson, H. (2000). Nitrogen leaching and crop availability in manured catch crop systems in Sweden. Nutrient Cycling in Agroecosystems 56, 139152.CrossRefGoogle Scholar
Van Kessel, J. S. & Reeves, J. B. (2002). Nitrogen mineralization potential of dairy manures and its relationship to composition. Biology and Fertility of Soils 36, 118123.CrossRefGoogle Scholar
Vertès, F., Hatch, D., Velthof, G., Taube, F., Laurent, F., Loiseau, P. & Recous, S. (2007). Short-term and cumulative effects of grassland cultivation on nitrogen and carbon cycling in ley-arable rotations. In Permanent and Temporary Grassland: Plant, Environment and Economy (Eds De Vliegher, A. & Carlier, L.), pp. 227246. Series: Grassland Science Europe no. 12. Zurich, Switzerland: European Grassland Federation.Google Scholar
Vetter, A., Heiermann, M. & Toews, T. (2009). Anbausysteme für Energiepflanzen. Frankfurt, Germany: DLG-Verlag.Google Scholar
Wulf, S., Maeting, M. & Clemens, J. (2002). Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: II. Greenhouse gas emissions. Journal of Environmental Quality 31, 17951801.CrossRefGoogle ScholarPubMed
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar
Zar, J. H. (2009). Biostatistical Analysis, 5th edn. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Zavattaro, L., Monaco, S., Sacco, D. & Grignani, C. (2012). Options to reduce N loss from maize in intensive cropping systems in Northern Italy. Agriculture, Ecosystems and Environment 147, 2435.CrossRefGoogle Scholar
Zegada-Lizarazu, W. & Monti, A. (2011). Energy crops in rotation. A review. Biomass and Bioenergy 35, 1225.CrossRefGoogle Scholar