Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-30T10:44:54.011Z Has data issue: false hasContentIssue false

Selection criteria in grass breeding. I

Published online by Cambridge University Press:  27 March 2009

Alec Lazenby
Affiliation:
School of Agriculture, University of Cambridge
H. H. Rogers
Affiliation:
Plant Breeding Institute, Cambridge

Extract

1. To evaluate selection criteria in grass breeding, a series of investigations was conducted measuring plant performance in a wide range of field environments.

2. This paper reports on the behaviour of one variety of Lolium perenne, S. 24, grown in a logarithmically related series of densities and frequently defoliated for 2 years. Half the plots received only natural rainfall, the rest were irrigated so that the calculated soil moisture deficit did not exceed 2 in.

3. In 1958, with little effect of irrigation, swards yielded most per unit area, widest spacing (24 in.) least; there were no significant differences in yields from the other densities (3, 6 and 12 in.). In 1959, when yields were lower, irrigation increased production in all plots, the higher the density the greater the increase. In contrast to 1958, over the range of spaced densities, the higher the density the greater the yield. Individual harvests did not always conform to the annual pattern.

4. Lowest mean production per plant was from broadcast plots in both 1958 and 1959, yields of plants from 3, 6 and 12 in. plots showed a linear increase with a reduction in density, those from 24 in., though heaviest, yielded less than linear expectation. In 1959 irrigation increased yields per plant.

5. Of the components of yield, number of sterile tillers gave the best estimate of total fresh weight (95·3% reliability). However, total number of tillers (sterile plus fertile) was almost as efficient (94%). Tiller weight was a much less reliable index.

6. The results and their value in establishing efficient criteria for selection in grass breeding are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlgren, H. L., Smith, D. C. & Nielson, E. L. (1945). J. Amer. Soc. Agron. 37, 268.CrossRefGoogle Scholar
Bails, W. C. & Holton, F. S. (1915). Phil. Trans. B, 206, 103.Google Scholar
Bleasdale, J. K. A. & Nelder, J. A. (1960). Nature, Lond., 188, 342.CrossRefGoogle Scholar
Charles, A. H. (1961). J. Brit. Grassl. Soc. 16, 69.CrossRefGoogle Scholar
Cooper, J. P. (1960). Heredity, 14, 229.CrossRefGoogle Scholar
Cooper, J. P. & Edwards, K. J. R. (1961). Heredity, 16, 63.CrossRefGoogle Scholar
Donald, C. M. (1951). Aust. J. Agric. Res. 2, 355.CrossRefGoogle Scholar
Duncan, W. G. (1958). Agron. J. 50, 82.CrossRefGoogle Scholar
Fejer, S. O. (1959). N.Z. J. Agric. Res. 2, 107.CrossRefGoogle Scholar
Frandsen, H. N. (1940). Imp. Agric. Bur. Joint Publ. 3, 80.Google Scholar
Green, J. O. & Eyles, J. C. (1960). J. Brit. Grassl. Soc. 15, 124.CrossRefGoogle Scholar
Grimes, D. W. & Musick, J. T. (1960). Agron. J. 52, 647.CrossRefGoogle Scholar
Hawkins, R. P. (1958). J. Nat. Inst. Agric. Bot. 9, 433.Google Scholar
Holliday, R. (1960 a). Field Crop Abstr. 13, 159.Google Scholar
Holliday, R. (1960 b). Field Crop Abstr. 13, 247.Google Scholar
Hughes, R. (1956). Bull. Welsh Pl. Breed. Sta. Series H, 18.Google Scholar
Jenkin, T. J. (1931). Bull. Bur. Pl. Genet. 3, 5.Google Scholar
Jones, Ll. I. (1959). Contribution to Measurement of Grassland Productivity (ed. J. D. Ivins), p. 34.Google Scholar
Julen, G. (1960). Proc. 8th. Int. Grassld Congr. p. 325.Google Scholar
Kelly, A. F. (1958). J. Brit. Grassl. Soc. 13, 99CrossRefGoogle Scholar
Kramer, H. H. (1947). J. Amer. Soc. Agron. 39, 181.CrossRefGoogle Scholar
Larger, R. H. M. (1959). Proc. N.Z. Inst. Agric. Sci. p. 53.Google Scholar
Lazenby, A. (1957). J. Agric. Sci. 48, 294.CrossRefGoogle Scholar
Lazenby, A. & Rogers, H. H. (1961). J. Brit. Grassl. Soc. 16, 153.CrossRefGoogle Scholar
Murphy, R. P. (1952). Proc. 6th. Int. Grassld Congr. p. 320.Google Scholar
Nissen, Ø. (1960). Proc. 8th Int. Grassld Congr. p. 310.Google Scholar
Patterson, J. K. & Law, A. G. (1952). Agron. J. 44, 520.CrossRefGoogle Scholar
Pearl, R. T. (ed.) (1954). Tech. Bull. Min. Agric. Fish. no. 4. H.M.S.O.Google Scholar
Proudfoot, K. G. (1957). Res. Exp. Rec. Min. Agric.N.I. 6, 9.Google Scholar
Raymond, W. F. (1951). J. Brit. Grassl. Soc. 6, 139.CrossRefGoogle Scholar
Russell, T. A. (1953). Emp. J. Exp. Agric. 21, 145.Google Scholar
Stanhill, G. (1958). Personal communication.Google Scholar
Tilley, J. M. A., Deriaz, R. E. & Terry, R. A. (1960). Proc. 8th Int. Grassld Congr. p. 533.Google Scholar
Vittum, M. T., Lathwell, D. J., Peck, N. H. & Sayre, C. B. (1958). Agron. J. 50, 577.CrossRefGoogle Scholar
Weiss, M. G. & Muckerji, S. K. (1950). Agron. J. 42, 555.CrossRefGoogle Scholar
Wilsie, C. P. (1949). Agron. J. 41, 412.CrossRefGoogle Scholar
Witte, H. (1919). J. Hered. 10, 291.CrossRefGoogle Scholar
Wright, C. E. (1960). Proc. 8th Int. Grassld Congr. p. 313.Google Scholar