Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T14:09:15.769Z Has data issue: false hasContentIssue false

Partial replacement of nitrogen fertilization with legumes in tropical pasture overseeded with temperate species for the production of steers

Published online by Cambridge University Press:  22 January 2020

G. R. Schmitz
Affiliation:
Animal Science Research Programme, Universidade Tecnológica Federal do Paraná (UTFPR), 85660-000, Dois Vizinhos, Paraná, Brazil
W. Paris
Affiliation:
Animal Science Research Programme, Universidade Tecnológica Federal do Paraná (UTFPR), 85660-000, Dois Vizinhos, Paraná, Brazil
R. R. Biesek
Affiliation:
Animal Science Research Programme, Universidade Tecnológica Federal do Paraná (UTFPR), 85660-000, Dois Vizinhos, Paraná, Brazil
O. A. D. Costa
Affiliation:
Animal Science Research Programme, Universidade Tecnológica Federal do Paraná (UTFPR), 85660-000, Dois Vizinhos, Paraná, Brazil
R. D. Mafioletti
Affiliation:
Animal Science Research Programme, Universidade Tecnológica Federal do Paraná (UTFPR), 85660-000, Dois Vizinhos, Paraná, Brazil
A. M. Umezaki
Affiliation:
Animal Science Research Programme, Universidade Tecnológica Federal do Paraná (UTFPR), 85660-000, Dois Vizinhos, Paraná, Brazil
L. F. G. Menezes*
Affiliation:
Animal Science Research Programme, Universidade Tecnológica Federal do Paraná (UTFPR), 85660-000, Dois Vizinhos, Paraná, Brazil
*
Author for correspondence: L. F. G. Menezes, E-mail: luismenezes@utfpr.edu.br

Abstract

Using legumes in forage mixes can help decrease the use of nitrogen fertilizers and possibly increase the nutritive value of pasture. The aim of the current study was to determine animal production and behavioural and ingestion parameters by evaluating the production and nutritive value of Aruana grass (Panicum maximum ‘Aruana’) intercropped with forage peanut (Arachis pintoi ‘Amarillo’) or fertilized with nitrogen. The treatments were N200 (200 kg N/ha per season – summer and winter), 100N + PE (100 kg N/ha per season plus pasture mixture with forage peanut) and N100 (100 kg N/ha per season). The presence of forage peanut in the pasture did not replace nitrogen fertilization as the pasture fertilized with 200 kg of nitrogen had a greater leaf/stem ratio (0.66 v. 0.54), stocking rate (2600 v. 2290 kg live weight/ha), average daily gain (0.880 v. 0.700 kg/day) and live weight gain (LWG) (652 v. 468 kg/ha) during summer. During winter, no effect of increased nitrogen fertilization on pasture and animal production was observed. In the total study period (summer + winter), a greater LWG (897 v. 741 kg/ha) occurred when a higher quantity of nitrogen (N200) was placed in the pasture compared to the insertion of forage peanuts in the system.

Type
Animal Research Paper
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alencar, NM, Vendramini, JMB, dos Santos, AC, Silveira, ML, Dubeux, JCB, Sousa, LF and Neiva, JNM (2018) Herbage characteristics of pintoi peanut and paslisadegrass established as monoculture or mixed swards. Crop Science 58, 21312137.CrossRefGoogle Scholar
Ali, S, Schwenke, GD, Peoples, MB, Scott, JF and Herridge, DF (2002) Nitrogen, yield and economic benefits of summer legumes for wheat production in rainfed northern Pakistan. Pakistan Journal of Agronomy 1, 1519.Google Scholar
Andrews, M, Raven, JA and Lea, PJ (2013) Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Annals of Applied Biology 163, 174199.CrossRefGoogle Scholar
AOAC (1998) Official Methods of Analysis of the Association of Official Analytical Chemistry, 16th Edn.Washington, DC, USA: AOAC.Google Scholar
Barcellos, AO, Ramos, AKB, Vilela, L and Martha Junior, GB (2008) Sustentabilidade da produção animal baseada em pastagens consorciadas e no emprego de leguminosas exclusivas, na forma de banco de proteína, nos trópicos brasileiros. Revista Brasileira de Zootecnia 37, 5167.CrossRefGoogle Scholar
Baumont, R, Prache, S, Meuret, M and Morand-Fehr, P (2000) How forage characteristics influence behaviour and intake in small ruminants: a review. Livestock Production Science 64, 1528.CrossRefGoogle Scholar
Beck, P, Hess, T, Hubbell, D, Jennings, J, Gadberry, MS and Sims, M (2016) Replacing synthetic N with clovers or alfalfa in bermudagrass pastures. 3. Performance of growing steers. Animal Production Science 57, 556562.CrossRefGoogle Scholar
Bellows, B (2001) Nutrient Cycling in Pastures. Livestock Systems Guide. Fayetteville, AR, USA: Appropriate Technology Transfer for Rural Areas.Google Scholar
Bhering, SB, dos Santos, HG, Bognola, IA, Curcio, G, Carvalho Junior, WD, Chagas, CDS, Manzatto, CV, Áglio, MLD and Souza, JDS (2009) Mapa de solos do Estado do Paraná, legenda atualizada. In CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, O solo e a produção de bioenergia: perspectivas e desafios: anais. [Viçosa, MG]: SBCS; Fortaleza: UFC, pp. 3236.Google Scholar
Carvalho, PCF, Ribeiro Filho, H, Poli, CHEC, de Moraes, A and Delagarde, R (2001) Importância da estrutura da pastagem na ingestão e seleção de dietas pelo animal em pastejo. In Mattos, WRS, Faria, VP, Silva, SC, Nussio, LG and Moura, JC (eds), Reunião Anual da Sociedade Brasileira de Zootecnia - A produção Anim. na visão dos Brasileiros: Anais. Piracicaba, Brazil: Sociedade Brasileira de Zootecnia, pp. 853871.Google Scholar
CQFS RS/SC (2004) Manual de Adubação e de Calagem para os Estados do Rio Grande do Sul e de Santa Catarina. Porto Alegre: Sociedade Brasileira de Ciência do Solo. Comissão de Química e Fertilidade do Solo.Google Scholar
de Andrade, CMS, Garcia, R, Valentim, JF and Pereira, OG (2006) Grazing management strategies for massaigrass-forage peanut pastures: 2. Productivity, utilization and sward structure. Revista Brasileira de Zootecnia 35, 343351.CrossRefGoogle Scholar
De, K, Kumar, D, Saxena, VK, Thirumurugan, P and Naqvi, SMK (2017) Effect of high ambient temperature on behavior of sheep under semi-arid tropical environment. International Journal of Biometeorology 61, 12691277.CrossRefGoogle ScholarPubMed
Difante, GS, Euclides, VPB, Nascimento Júnior, DD, da Silva, SC, Torres Júnior, RADA and Sarmento, DODL (2009) Ingestive behaviour, herbage intake and grazing efficiency of beef cattle steers on Tanzania guineagrass subjected to rotational stocking managements. Revista Brasileira de Zootecnia 38, 10011008.CrossRefGoogle Scholar
Duchini, PG, Guzatti, GC, Ribeiro Filho, HMN and Sbrissia, AF (2014) Tiller size/density compensation in temperate climate grasses grown in monoculture or in intercropping systems under intermittent grazing. Grass and Forage Science 69, 655665.CrossRefGoogle Scholar
Dumont, B, Garel, JP, Ginane, C, Decuq, F, Farruggia, A, Pradel, P, Rigolot, C and Petit, M (2007) Effect of cattle grazing a species-rich mountain pasture under different stocking rates on the dynamics of diet selection and sward structure. Animal: An International Journal of Animal Bioscience 1, 10421052.CrossRefGoogle ScholarPubMed
Euclides, VPB, da Conceição Lopes, F, do Nascimento Junior, D, da Silva, SC, Difante, GS and Barbosa, RA (2016) Steer performance on Panicum maximum (cv. Mombaça) pastures under two grazing intensities. Animal Production Science 56, 18491856.CrossRefGoogle Scholar
Ferreira, AL, Maurício, RM, Fernandes, FD, Carvalho, MA, Ramos, AKB and Junior, RG (2012) Ranking contrasting genotypes of forage peanut based on nutritive value and fermentation kinetics. Animal Feed Science and Technology 175, 1623.CrossRefGoogle Scholar
Forbes, TDA (1988) Researching the plant-animal interface: the investigation of ingestive behavior in grazing animals. Journal of Animal Science 66, 23692379.CrossRefGoogle ScholarPubMed
Foster, A, Vera, CL, Malhi, SS and Clarke, FR (2014) Forage yield of simple and complex grass–legume mixtures under two management strategies. Canadian Journal of Plant Science 94, 4150.CrossRefGoogle Scholar
Goering, HK and Van Soest, PJ (1970) Forage Fiber Analysis. Apparatus, Reagents, Procedures and Some Applications. Agricultural Handbook 379. Washington, DC, USA: USDA.Google Scholar
Heringer, I and Carvalho, PCF (2002) Ajuste da carga animal em experimentos de pastejo: uma nova proposta. Ciência Rural 32, 675679.CrossRefGoogle Scholar
Hirata, M and Pakiding, W (2002) Dynamics in tiller weight and its association with herbage mass and tiller density in a bahia grass (Paspalum notatum) pasture under cattle grazing. Tropical Grasslands 36, 2432.Google Scholar
Hodgson, J (1982) Ingestive behavior. In Leaver, JD (ed.), Herbage Intake Handbook. Hurley, UK: British Grassland Society, pp. 113138.Google Scholar
Høgh-Jensen, H and Schjørring, JK (1997) Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiency. Plant and Soil 197, 187199.CrossRefGoogle Scholar
Jamieson, WS and Hodgson, J (1979) The effect of daily herbage allowance and sward characteristics upon the ingestive behaviour and herbage intake of calves under strip-grazing management. Grass and Forage Science 34, 261271.CrossRefGoogle Scholar
Johnson, TR and Combs, DK (1991) Effects of prepartum diet, inert rumen bulk, and dietary polyethylene glycol on dry matter intake of lactating dairy cows. Journal of Dairy Science 74, 933944.CrossRefGoogle ScholarPubMed
Komarek, AR (1993) A filter bag procedure for improved efficiency of fiber analysis (abstract). Journal of Dairy Science 76, 250.Google Scholar
Köppen, W (1948) Das Geographische System der Klimate–Handbuch der Klimatologie. 1, Part C. Berlin, Germany: Gerbrüder Bornträger.Google Scholar
Kunkle, WE and Bates, DB (1998) Evaluating feed purchasing options: energy, protein, and mineral supplements. In Managing Nutrition and Forages to Improve Productivity and Profitability. Proceedings of the 47th Annual Florida Beef Cattle Short Course Proceedings. Gainesville, FL, USA: University of Florida, pp. 5970.Google Scholar
Littell, RC, Milliken, GA, Stroup, WW, Wolfinger, RD and Schabenberger, O (2006) SAS for Mixed Models, 2nd Edn.Cary, NC, USA: SAS Institute.Google Scholar
Lüscher, A, Mueller-Harvey, I, Soussana, JF, Rees, RM and Peyraud, JL (2014) Potential of legume based grassland–livestock systems in Europe: a review. Grass and Forage Science 69, 206228.CrossRefGoogle ScholarPubMed
MacLean, AM, Finan, TM and Sadowsky, MJ (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiology 144, 615622.CrossRefGoogle ScholarPubMed
Mangaravite, JCS, Passos, RR, Andrade, FV, Burak, DL and de Mendonça, ES (2014) Phytomass production and nutrient accumulation by green manure species. Revista Ceres 61, 732739.CrossRefGoogle Scholar
Maróti, G and Kondorosi, E (2014) Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Frontiers in Microbiology 5, article no. 326, 16. doi: 10.3389/fmicb.2014.00326.Google ScholarPubMed
Moore, IE and Sollenberger, LE (1997) Techniques to predict pasture intake. In Gomide, JA (ed.), Simpósio Internacional Sobre Produção Animal em Pastejo, vol. 1. Viçosa, Brazil: Universidade Federal de Viçosa, pp. 8196.Google Scholar
Muir, JP, Pitman, WD and Foster, JL (2011) Sustainable, low-input, warm-season, grass–legume grassland mixtures: mission (nearly) impossible? Grass and Forage Science 66, 301315.CrossRefGoogle Scholar
Okazaki, S, Tittabutr, P, Teulet, A, Thouin, J, Fardoux, J, Chaintreuil, C, Gully, D, Arrighi, J-F, Furuta, N, Miwa, H, Yasuda, M, Nouwen, N, Teaumroong, N and Giraud, E (2016) Rhizobium–legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. The ISME Journal 10, 6474.CrossRefGoogle ScholarPubMed
Olivo, CJ, Ziech, MF, Both, JF, Meinerz, GR, Tyska, D and Vendrame, T (2009) Produção de forragem e carga animal em pastagens de capim-elefante consorciadas com azevém, espécies de crescimento espontâneo e trevo-branco ou amendoim forrageiro. Revista Brasileira de Zootecnia 38, 2733.CrossRefGoogle Scholar
Orr, RJ, Rutter, SM, Yarrow, NH, Champion, RA and Rook, AJ (2004) Changes in ingestive behaviour of yearling dairy heifers due to changes in sward state during grazing down of rotationally stocked ryegrass or white clover pastures. Applied Animal Behaviour Science 87, 205222.CrossRefGoogle Scholar
Pavinato, PS, Restelatto, R, Sartor, LR and Paris, W (2014) Production and nutritive value of ryegrass (cv. Barjumbo) under nitrogen fertilization. Revista Ciência Agronômica 45, 230237.CrossRefGoogle Scholar
Phelan, P, Moloney, AP, McGeough, EJ, Humphreys, J, Bertilsson, J, O'Riordan, EG and O'Kiely, P (2015) Forage legumes for grazing and conserving in ruminant production systems. Critical Reviews in Plant Sciences 34, 281326.CrossRefGoogle Scholar
Restelatto, R, Pavinato, PS, Sartor, LR and Paixão, SJ (2014) Production and nutritional value of sorghum and black oat forages under nitrogen fertilization. Grass and Forage Science 69, 693704.CrossRefGoogle Scholar
Restelatto, R, Pavinato, PS, Sartor, LR, Einsfeld, SM and Baldicera, FP (2015) Nitrogen efficiency and nutrient absorption by a sorghum-oats forage succession. Advances in Agriculture 2015, 112. http://dx.doi.org/10.1155/2015/702650.CrossRefGoogle Scholar
Silva, LD, Pereira, OG, Silva, TC, Valadares Filho, SC, Ribeiro, KG and Santos, SA (2018) Intake, apparent digestibility, rumen fermentation and nitrogen efficiency in sheep fed a tropical legume silage with or without concentrate. Anais da Academia Brasileira de Ciências 90, 35513557.CrossRefGoogle ScholarPubMed
Tamele, OH, Lopes de Sá, OAA, Bernardes, TF, Lara, MAS and Casagrande, DR (2018) Optimal defoliation management of Brachiaria grass–forage peanut for balanced pasture establishment. Grass and Forage Science 73, 522531.CrossRefGoogle Scholar
Tilley, JMA and Terry, RA (1963) A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science 18, 104111.CrossRefGoogle Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Venturini, T, de Menezes, LFG, Montagner, MM, Paris, W, Schmitz, GR and Molinete, ML (2017) Influences of nitrogen fertilization and energy supplementation for growth performance of beef cattle on Alexander grass. Tropical Animal Health and Production 49, 17571762.CrossRefGoogle Scholar
Wilm, HG, Costello, DF and Klipple, GE (1944) Estimating forage yield by the double-sampling method. Journal of the American Society of Agronomy 36, 194203.CrossRefGoogle Scholar