Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T16:06:47.687Z Has data issue: false hasContentIssue false

Metabolism of the soluble carbohydrates of grasses in the rumen of the sheep

Published online by Cambridge University Press:  27 March 2009

Gwen J. Thomas
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeenshire

Extract

1. The bacteria and protozoa from the rumen of the sheep have been examined for their invertase activity.

2. Washed suspensions of protozoal fractions obtained from the rumen were rich in invertase, and the greater part of the total activity in the rumen could be ascribed to the holotrich protozoa.

3. Rumen streptococci capable of fermenting sucrose and fructan were isolated in pure culture. Their invertase was found to be an adaptive enzyme.

4. Fermentation of the soluble carbohydrates of grass was studied in an ‘artificial rumen’. The micro-organisms converted 30% of the substrates into storage starch.

5. Rumen contents from a grass-fed sheep were twice as active towards grass carbohydrates as those from hay-fed sheep.

6. The hay and grass fed to the sheep contained invertase activity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arni, P. C. & Percival, E. G. V. (1951). J. Chem. Soc. p. 1822.Google Scholar
Barker, S. B. & Summerson, W. H. (1941). J. Biol. Chem. 138, 535.CrossRefGoogle Scholar
Bacon, J. S. D. & Edelman, J. (1951). Biochem. J. 48, 114.CrossRefGoogle Scholar
Christie, A. O. & Porteous, J. W. (1957). Biochem. J. 67, 19P.Google Scholar
Dedonder, R. (1952). Bull. Soc. Chim. Biol. 34, 114.Google Scholar
Eadie, J. M. & Oxford, A. E. (1957). Nature, Lond., 179, 485.CrossRefGoogle Scholar
Gutierrez, J. (1955). Biochem. J. 60, 516.CrossRefGoogle Scholar
Heald, P. J., Oxford, A. E. & Sugden, B. (1952). Nature, Lond., 169, 1055.CrossRefGoogle Scholar
Hobson, P. N. (1950). Ph.D. Thesis. University of Birmingham.Google Scholar
Howard, B. H. (1957). Biochem. J. 67, 18P.CrossRefGoogle Scholar
Howard, B. H. (1959). Biochem. J. 71, 675.CrossRefGoogle Scholar
Hungate, R. E. (1950). Bact. Rev. 14, 1.CrossRefGoogle Scholar
Masson, F. M. & Oxford, A. E. (1951). J. Gen. Microbiol. 5, 664.CrossRefGoogle Scholar
Mould, D. L. & Thomas, G. J. (1958). Biochem. J. 69, 327.CrossRefGoogle Scholar
Somogyi, M. (1945 a). J. Biol. Chem. 160, 69.CrossRefGoogle Scholar
Somogyi, M. (1945 b). J. Biol. Chem. 160, 61.CrossRefGoogle Scholar
Sugden, B. (1953). J. Gen. Microbiol. 9, 44.CrossRefGoogle Scholar
Waite, R. & Boyd, J. (1953). J. Sci. Fd Agric. 4, 197.CrossRefGoogle Scholar
Warner, A. C. I. (1956). J. Gen. Microbiol. 14, 733.CrossRefGoogle Scholar
Weller, R. A. & Gray, F. V. (1954). J. Exp. Biol. 31, 40.CrossRefGoogle Scholar
Westhuizen, G. C. A. van der, Oxford, A. E. & Quin, J. I. (1950). Onderstepoort J. vet. Sci. 24, 119.Google Scholar
Whistler, B. L. & Durso, D. F. (1950). J. Amer. Chem. Soc. 72, 677.CrossRefGoogle Scholar