Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T02:39:10.119Z Has data issue: false hasContentIssue false

Marker detection and elite allele mining for yield traits in Upland cotton (Gossypium hirsutum L.) by association mapping

Published online by Cambridge University Press:  27 September 2016

C. Q. LI
Affiliation:
School of Life science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
N. DONG
Affiliation:
School of Life science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
Y. Z. FU
Affiliation:
School of Life science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
R. R. SUN
Affiliation:
School of Life science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
Q. L. WANG*
Affiliation:
School of Life science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
*
*To whom all correspondence should be addressed. Email: cottonmol@aliyun.com

Summary

Association mapping based on linkage disequilibrium is an effective approach for dissecting the inheritance of complex multi-gene traits. In the present study, association mapping was performed for yield traits based on 172 popular Upland cotton (Gossypium hirsutum L.) cultivars in China and 331 polymorphic simple sequence repeat (SSR) markers. The gene diversity index of 331 markers ranged from 0·0387 to 0·7799 with an average of 0·4002, and the polymorphism information content ranged from 0·0379 to 0·7473 with an average of 0·3375. A total of 93 significantly associated markers for seven yield traits were identified across more than one environment, among which 11 were for seed cotton yield, 12 for lint yield, 11 for boll number per plant, 13 for boll weight, 21 for lint percentage, 14 for lint index and 11 for seed index. The corresponding ranges in phenotypic variation explained by markers across four environments for these seven traits were 1·75–10·49, 1·75–9·34, 2·84–11·80, 2·59–9·89, 2·38–13·97, 2·73–14·82 and 2·50–11·88%, respectively. Some of the yield-associated markers detected were found to be linked to or associated with the same traits identified in previous studies. Furthermore, elite alleles for yield traits were also mined. The present study can provide useful information for further understanding the genetic basis of yield traits, and facilitate high-yield breeding by molecular design in Upland cotton.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdurakhmonov, I. Y., Kohel, R. J., Yu, J. Z., Pepper, A. E., Abdullaev, A. A., Kushanov, F. N., Salakhutdinov, I. B., Buriev, Z. T., Saha, S., Scheffler, B. E., Jenkins, J. N. & Abdukarimov, A. (2008). Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92, 478487.Google Scholar
Abdurakhmonov, I. Y., Saha, S., Jenkins, J. N., Buriev, Z. T., Shermatov, S. E., Scheffler, B. E., Pepper, A. E., Yu, J. Z., Kohel, R. J. & Abdukarimov, A. (2009). Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136, 401417.Google Scholar
An, C. F., Jenkins, J. N., Wu, J. X., Guo, Y. F. & McCarty, J. C. (2010). Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of Upland cotton. Euphytica 172, 2134.Google Scholar
Aranzana, M. J., Kim, S., Zhao, K. Y., Bakker, E., Horton, M., Jakob, K., Lister, C., Molitor, J., Shindo, C., Tang, C. L., Toomajian, C., Traw, B., Zheng, H., Bergelson, J., Dean, C., Marjoram, P. & Nordborg, M. (2005). Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genetics 1, e60. doi: 10.1371/journal.pgen.0010060 CrossRefGoogle ScholarPubMed
Cai, C. P., Ye, W. X., Zhang, T. Z. & Guo, W. Z. (2014). Association analysis of fiber quality traits and exploration of elite alleles in Upland cotton cultivars/accessions (Gossypium hirsutum L.). Journal of Integrative Plant Biology 56, 5162.Google Scholar
Cardon, L. R. & Palmer, L. J. (2003). Population stratification and spurious allelic association. Lancet 361, 598604.Google Scholar
Chen, G. & Du, X. M. (2006). Genetic diversity of source germplasm of Upland cotton in China as determined by SSR marker analysis. Acta Genetica Sinica 33, 733745.Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620.Google Scholar
Flint-Garcia, S. A., Thornsberry, J. M. & Bucker, E. S. (2003). Structure of linkage disequilibrium in plants. Annual Review of Plant Biology 54, 357374.Google Scholar
Flint-Garcia, S. A., Thuillet, A. C., Yu, J., Pressoir, G., Romero, S. M., Mitchell, S. E., Doebley, J., Kresovich, S., Goodman, M. M. & Buckler, E. S. (2005). Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant Journal 44, 10541064.Google Scholar
Guo, W. Z., Zhang, T. Z., Pan, J. J. & Wang, X. Y. (1997). A preliminary study on genetic diversity of Upland cotton cultivars in China. Acta Gossypii Sinica 9, 1924.Google Scholar
Guo, W. Z., Zhang, T. Z., Ding, Y. Z., Zhu, Y. C., Shen, X. L. & Zhu, X. F. (2005). Molecular marker assisted selection and pyramiding of two QTLs for fiber strength in Upland cotton. Acta Genetica Sinica 32, 12751285.Google Scholar
Guo, W. Z., Ma, G. J., Zhu, Y. C., Yi, C. X. & Zhang, T. Z. (2006). Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in Upland cotton. Journal of Integrative Plant Biology 48, 320326.Google Scholar
Guo, W. Z., Cai, C. P., Wang, C. B., Han, Z. G., Song, X. L., Wang, K., Niu, X. W., Wang, C., Lu, K. Y., Shi, B. & Zhang, T. Z. (2007). A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium . Genetics 176, 527541.Google Scholar
Gupta, P. K., Rustgi, S. & Kulwal, P. L. (2005). Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology 57, 461485.Google Scholar
He, D. H., Lin, Z. X., Zhang, X. L., Nie, Y. C., Guo, X. P., Feng, C. D. & Stewart, J. McD. (2005). Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica 144, 141149.CrossRefGoogle Scholar
He, D. H., Lin, Z. X., Zhang, X. L., Nie, Y. C., Guo, X. P., Zhang, Y. X. & Li, W. (2007). QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense . Euphytica 153, 181197.Google Scholar
Huang, Z. K. (2007). The Cultivars and their Pedigree of Cotton in China. Beijing: China Agriculture Press.Google Scholar
Kantartzi, S. K. & Stewart, J. McD. (2008). Association analysis of fibre traits in Gossypium arboreum accessions. Plant Breeding 127, 173179.Google Scholar
Knowler, W. C., Williams, R. C., Pettitt, D. J. & Steinberg, A. G. (1988). Gm3, 5, 13, 14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. American Journal of Human Genetics 43, 520526.Google Scholar
Lacape, J. M., Nguyen, T. B., Thibivilliers, S., Bojinov, B., Courtois, B., Cantrell, R. G., Burr, B. & Hau, B. (2003). A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46, 612626.Google Scholar
Lacape, J. M., Llewellyn, D., Jacobs, J., Arioli, T., Becker, D., Calhoun, S., Al-Ghazi, Y., Liu, S., Palaï, O., Georges, S., Giband, M., de Assunção, H., Barroso, P. A. V., Claverie, M., Gawryziak, G., Jean, J., Vialle, M. & Viot, C. (2010). Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biology 10, 132. doi: 10.1186/1471-2229-10-132 Google Scholar
Li, C. Q., Guo, W. Z., Ma, X. L. & Zhang, T. Z. (2008). Tagging and mapping of QTL for yield and its components in Upland cotton (Gossypium hirsutum L.) population with varied lint percentage. Cotton Science 20, 163169.Google Scholar
Li, F. G., Fan, G. Y., Lu, C. R., Xiao, G. H., Zou, C. S., Kohel, R. J., Ma, Z. Y., Shang, H. H., Ma, X. F., Wu, J. Y., Liang, X. M., Huang, G., Percy, R. G., Liu, K., Yang, W. H., Chen, W. B., Du, X. M., Shi, C. C., Yuan, Y. L., Ye, W. W., Liu, X., Zhang, X. Y., Liu, W. Q., Wei, H. L., Wei, S. J., Huang, G. D., Zhang, X. L., Zhu, S. J., Zhang, H., Sun, F. M., Wang, X. F., Liang, J., Wang, J. H., He, Q., Huang, L. H., Wang, J., Cui, J. J., Song, G. L., Wang, K. B., Xu, X., Yu, J. Z., Zhu, Y. X. & Yu, S. X. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology 33, 524530.Google Scholar
Li, C. Q., Ai, N. J., Zhu, Y. J., Wang, Y. Q., Chen, X. D., Li, F., Hu, Q. Y. & Wang, Q. L. (2016). Association mapping and favourable allele exploration for plant architecture traits in upland cotton (Gossypium hirsutum L.) accessions. Journal of Agricultural Science, Cambridge 154, 567583.Google Scholar
Liu, K. J. & Muse, S. V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 21282129.Google Scholar
Liu, R. Z., Wang, B. H., Guo, W. Z., Qin, Y. S., Wang, L. G., Zhang, Y. M. & Zhang, T. Z. (2012). Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Molecular Breeding 29, 297311.Google Scholar
Liu, G. Z., Mei, H. X., Wang, S., Li, X. H., Zhu, X. F. & Zhang, T. Z. (2015). Association mapping of seed oil and protein contents in Upland cotton. Euphytica 205, 637645.Google Scholar
Mei, M., Syed, N. H., Gao, W., Thaxton, P. M., Smith, C. W., Stelly, D. M. & Chen, Z. J. (2004). Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical and Applied Genetics 108, 280291.Google Scholar
Mei, H. X., Zhu, X. F. & Zhang, T. Z. (2013). Favorable QTL alleles for yield and its components identified by association mapping in Chinese Upland cotton cultivars. PLoS ONE 8, e82193. doi: 10.1371/journal.pone.0082193 Google Scholar
Mei, H. X., Ai, N. J., Zhang, X., Ning, Z. Y. & Zhang, T. Z. (2014). QTLs conferring FOV 7 resistance detected by linkage and association mapping in Upland cotton. Euphytica 197, 237249.CrossRefGoogle Scholar
Myles, S., Peiffer, J., Brown, P. J., Ersoz, E. S., Zhang, Z., Costich, D. E. & Buckler, E. S. (2009). Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21, 21942202.Google Scholar
Nguyen, T. B., Giband, M., Brottier, P., Risterucci, A. M. & Lacape, J. M. (2004). Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theoretical and Applied Genetics 109, 167175.Google Scholar
Paterson, A. H., Brubaker, C. L. & Wendel, J. F. (1993). A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter 11, 122127.Google Scholar
Peleman, J. D. & van der Voort, J. R. (2003). Breeding by design. Trends in Plant Science 8, 330334.Google Scholar
Pritchard, J. K., Wen, X. & Falush, D. (2009). Documentation for structure Software: Version 2.3. Available from: http://pritchardlab.stanford.edu/structure_software/release_versions/v2.3.4/structure_doc.pdf (verified 13 June 2016).Google Scholar
Qin, H. D., Guo, W. Z., Zhang, Y. M. & Zhang, T. Z. (2008). QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theoretical and Applied Genetics 117, 883894.Google Scholar
Qin, Y. S., Liu, R. Z., Mei, H. X., Zhang, T. Z. & Guo, W. Z. (2009). QTL mapping for yield traits in Upland cotton (Gossypium hirsutum L.). Acta Agronomica Sinica 35, 18121821.Google Scholar
Qin, H. D., Chen, M., Yi, X. D., Bie, S., Zhang, C., Zhang, Y. C., Lan, J. Y., Meng, Y. Y., Yuan, Y. L. & Jiao, C. H. (2015). Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections. PLoS ONE 10, e0118073. doi: 10.1371/journal.pone.0118073.Google Scholar
Ren, L. H., Guo, W. Z. & Zhang, T. Z. (2002). Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line. Acta Botanica Sinica 44, 815820.Google Scholar
Rong, J. K., Feltus, F. A., Waghmare, V. N., Pierce, G. J., Chee, P. W., Draye, X., Saranga, Y., Wright, R. J., Wilkins, T. A., May, O. L., Smith, C. W., Gannaway, J. R., Wendel, J. F. & Paterson, A. H. (2007). Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176, 25772588.Google Scholar
Saeed, M., Guo, W. Z. & Zhang, T. Z. (2014). Association mapping for salinity tolerance in cotton (Gossypium hirsutum L.) germplasm from US and diverse regions of China. Australian Journal of Crop Science 8, 338346.Google Scholar
Shen, X. L., Guo, W. Z., Lu, Q. X., Zhu, X. F., Yuan, Y. L. & Zhang, T. Z. (2007). Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155, 371380.Google Scholar
Shi, Y. Z., Liu, A. Y., Li, J. W., Shao, Y. H. & Yuan, Y. L. (2007). The major QTLs linked to fiber strength for cotton breeding program by molecular marker assisted selection. Chinese Journal of Molecular Plant Breeding 5, 521527.Google Scholar
Song, X. L. & Zhang, T. Z. (2009). Quantitative trait loci controlling plant architectural traits in cotton. Plant Science 177, 317323.Google Scholar
Ulloa, M. & Meredith, W. R. Jr (2000). Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. Journal of Cotton Science 4, 161170.Google Scholar
Ulloa, M., Saha, S., Jenkins, N., Meredith, W. R. Jr, McCarty, J. C. Jr & Stelly, D. M. (2005). Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. Journal of Heredity 96, 132144.Google Scholar
Wang, B. H., Guo, W. Z., Zhu, X. F., Wu, Y. T., Huang, N. T. & Zhang, T. Z. (2007 a). QTL mapping of yield and yield components for elite hybrid derived-RILs in Upland cotton. Journal of Genetics and Genomics 34, 3545.Google Scholar
Wang, F. R., Liu, R. Z., Wang, L. M., Zhang, C. Y., Liu, G. D., Liu, Q. H., Ma, X. B. & Zhang, J. (2007 b). Molecular markers of Verticillium wilt resistance in Upland cotton (Gossypium hirsutum L.) cultivar and their effects on assisted phenotypic selection. Cotton Science 19, 424430.Google Scholar
Wu, J., Gutierrez, O. A., Jenkins, J. N., McCarty, J. C. & Zhu, J. (2009). Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of Upland cotton. Euphytica 165, 231245.Google Scholar
Xia, Z., Zhang, X., Liu, Y. Y., Jia, Z. F., Zhao, H. H., Li, C. Q. & Wang, Q. L. (2014). Major Gene identification and quantitative trait locus mapping for yield-related traits in Upland cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture 13, 299309.Google Scholar
Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., McMullen, M. D., Gaut, B. S., Nielsen, D. M., Holland, J. B., Kresovich, S. & Buckler, E. S. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38, 203208.Google Scholar
Yu, J. W., Zhang, K., Li, S. Y., Yu, S. X., Zhai, H. H., Wu, M., Li, X. L., Fan, S. L., Song, M. Z., Yang, D. G., Li, Y. H. & Zhang, J. F. (2013). Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theoretical and Applied Genetics 126, 275287.Google Scholar
Yu, J. Z., Ulloa, M., Hoffman, S. M., Kohel, R. J., Pepper, A. E., Fang, D. D., Percy, R. G. & Burke, J. J. (2014). Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. × G. barbadense L.) RIL population. Molecular Genetics and Genomics 289, 13471367.Google Scholar
Zeng, L. H., Meredith, W. R. Jr, Gutierrez, O. A. & Boykin, D. L. (2009). Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species. Theoretical and Applied Genetics 119, 93103.Google Scholar
Zhang, J., Guo, W. Z. & Zhang, T. Z. (2002). Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theoretical and Applied Genetics 105, 11661174.Google Scholar
Zhang, T. Z., Yuan, Y. L., Yu, J., Guo, W. Z. & Kohel, R. J. (2003). Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theoretical and Applied Genetics 106, 262268.Google Scholar
Zhang, H. B., Li, Y. N., Wang, B. H. & Chee, P. W. (2008). Recent advances in cotton genomics. International Journal of Plant Genomics, Article ID 742304. doi: 10.1155/2008/742304 Google Scholar
Zhang, J., Chen, X., Zhang, K., Liu, D. J., Wei, X. Q. & Zhang, Z. S. (2010). QTL mapping of yield traits with composite cross population in Upland cotton (Gossypium hirsutum L.). Journal of Agricultural Biotechnology 18, 476481.Google Scholar
Zhang, T. Z., Qian, N., Zhu, X. F., Chen, H., Wang, S., Mei, H. X. & Zhang, Y. M. (2013). Variations and transmission of QTL alleles for yield and fiber qualities in Upland cotton cultivars developed in China. PLoS ONE 8, e57220. doi: 10.1371/journal.pone.0057220 Google Scholar
Zhang, T. Z., Hu, Y., Jiang, W. K., Fang, L., Guan, X. Y., Chen, J. D., Zhang, J., Saski, C. A., Scheffler, B. E., Stelly, D. M., Hulse-Kemp, A. M., Wan, Q., Liu, B. L., Liu, C. X., Wang, S., Pan, M. Q., Wang, Y. K., Wang, D. W., Ye, W. X., Chang, L. J., Zhang, W. P., Song, Q. X., Kirkbride, R. C., Chen, X. Y., Dennis, E., Llewellyn, D. J., Peterson, D. G., Thaxton, P., Jones, D. C., Wang, Q., Xu, X. Y., Zhang, H., Wu, H. T., Zhou, L., Mei, G. F., Chen, S. Q., Tian, Y., Xiang, D., Li, X. H., Ding, J., Zuo, Q. Y., Tao, L. N., Liu, Y. C., Li, J., Lin, Y., Hui, Y. Y., Cao, Z. S., Cai, C. P., Zhu, X. F., Jiang, Z., Zhou, B. L., Guo, W. Z., Li, R. Q. & Chen, Z. J. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology 33, 531537.Google Scholar
Zhao, K., Aranzana, M. J., Kim, S., Lister, C., Shindo, C., Tang, C., Toomajian, C., Zheng, H., Dean, C., Marjoram, P. & Nordborg, M. (2007). An arabidopsis example of association mapping in structured samples. PLoS Genetics 31, e4. doi: 10.1371/journal.pgen.0030004 Google Scholar
Zhao, Y., Wang, H., Chen, W. & Li, Y. H. (2014). Genetic structure, linkage disequilibrium and association mapping of verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS ONE 9, e86308. doi: 10.1371/journal.pone.0086308 Google Scholar
Zhu, C., Gore, M., Buckler, E. S. & Yu, J. M. (2008). Status and prospects of association mapping in plants. Plant Genome 1, 520.Google Scholar
Supplementary material: File

Li supplementary material

Tables S1-S2

Download Li supplementary material(File)
File 524.8 KB