Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-06T17:17:14.367Z Has data issue: false hasContentIssue false

Film-mulched maize production: response to controlled-release urea fertilization

Published online by Cambridge University Press:  03 August 2017

J. M. GUO
Affiliation:
College of Resources and Environmental Sciences, Center for Resources, Environment and Food Security, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, People's Republic of China
J. Q. XUE
Affiliation:
College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, People's Republic of China
A. D. BLAYLOCK
Affiliation:
Agrium Inc., Calgary, AB T2J7E8, Canada
Z. L. CUI
Affiliation:
College of Resources and Environmental Sciences, Center for Resources, Environment and Food Security, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, People's Republic of China
X. P. CHEN*
Affiliation:
College of Resources and Environmental Sciences, Center for Resources, Environment and Food Security, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, People's Republic of China
*
*To whom all correspondence should be addressed. Email: chenxp@cau.edu.cn

Summary

Optimal nitrogen (N) management for maize in the film-mulched production systems that are widely used in dryland agriculture is difficult because top-dressing N is impractical. The current research determined how matching N supply and demand was achieved before and after silking stages, when single applications of controlled release urea (CRU) were combined with conventional urea in film-mulched maize production. The CRU: urea mixture was applied in a 1 : 2 or 2 : 1 ratio and all three fertilizer regimes (urea alone and CRU: urea at 1 : 2 or 2 : 1) were applied at N rates of 180 and 240 kg/ha over 2 years. The 1 : 2 CRU: urea mixture, applied once at 180 kg N/ha, was found to synchronize N supply with demand, thereby reducing N losses. The highest grain yields (11·8–12·0 t/ha), N uptake (232–239 kg/ha), N recovery (65·8–67·7%) and high net economic return were achieved with this regime. These results indicate that a single application of a mixture of CRU and urea can synchronize N supply with demand and provide higher yields and profits than conventional N fertilization in film-mulched maize systems.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borrell, A. K., Hammer, G. L. & Van Oosterom, E. (2001). Stay-green: a consequence of the balance between supply and demand for nitrogen during grain filling. Annals of Applied Biology 138, 9195.CrossRefGoogle Scholar
Bu, L. D., Liu, J. L., Zhu, L., Luo, S. S., Chen, X. P., Li, S. Q., Hill, R. L. & Zhao, Y. (2013). The effects of mulching on maize growth, yield and water use in a semi-arid region. Agricultural Water Management 123, 7178.CrossRefGoogle Scholar
Cassman, K. G., Dobermann, A. R. & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31, 132140.Google Scholar
Cawse, P. A. (1967). The determination of nitrate in soil solutions by ultraviolet spectrophotometry. Analyst 92, 311315.Google Scholar
Chen, D. L., Suter, H., Islam, A., Edis, R., Freney, J. R. & Walker, C. N. (2008). Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Australian Journal of Soil Research 46, 289301.Google Scholar
Chen, X. P., Cui, Z. L., Fan, M. S., Vitousek, P. M., Zhao, M., Ma, W. Q., Wang, Z. L., Zhang, W. J., Yan, X. Y., Yang, J. C., Deng, X. P., Gao, Q., Zhang, Q., Guo, S. L., Ren, J., Li, S. L., Ye, Y. L., Wang, Z. H., Huang, J. L., Tang, Q. Y., Sun, Y. X., Peng, X. L., Zhang, J. W., He, M. R., Zhu, Y. J., Xue, J. Q., Wang, G. L., Wu, L., An, N., Wu, L. Q., Ma, L., Zhang, W. F. & Zhang, F. S. (2014). Producing more grain with lower environmental costs. Nature 514, 486489.CrossRefGoogle ScholarPubMed
Cui, Z. L., Yue, S. C., Wang, G. L., Meng, Q. F., Wu, L., Yang, Z. P., Zhang, Q., Li, S. Q., Zhang, F. S. & Chen, X. P. (2013). Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Global Change Biology 19, 24672477.Google Scholar
Dobermann, A. (2005). Nitrogen use efficiency – state of the art. In IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, Germany, 28–30 June 2005, pp. 116. Paris, France: International Fertiliser Industry Association.Google Scholar
Farmaha, B. S. & Sims, A. L. (2013). The influence of polymer-coated urea and urea fertilizer mixtures on spring wheat protein concentrations and economic returns. Agronomy Journal 105, 13281334.Google Scholar
Fujinuma, R., Balster, N. J. & Norman, J. M. (2009). An improved model of nitrogen release for surface-applied controlled-release fertilizer. Soil Science Society of America Journal 73, 20432050.Google Scholar
Gan, Y. T., Siddique, K. H. M., Turner, N. C., Li, X. G., Niu, J. Y., Yang, C., Liu, L. P. & Chai, Q. (2013). Ridge-furrow mulching systems – an innovative technique for boosting crop productivity in semiarid rainfed environments. Advances in Agronomy 118, 429476.Google Scholar
Gong, Z. T., Zhang, G. L. & Chen, Z. C. (2007). Pedogenesis and Soil Taxonomy. (In Chinese.) Beijing, China: Science Press.Google Scholar
Grassini, P., Yang, H. S., Irmak, S., Thorburn, J., Burr, C. & Cassman, K. G. (2011). High-yield irrigated maize in the Western U.S. Corn Belt. II. Irrigation management and crop water productivity. Field Crops Research 120, 133141.CrossRefGoogle Scholar
Hatfield, J. L. & Venterea, R. T. (2014). Enhanced efficiency fertiliser: a multi-site comparison of the effects on nitrous oxide emissions and agronomic performance. Agronomy Journal 106, 679680.Google Scholar
Horowitz, W. (Ed.). (1970). Official Methods of Analysis of the Association of Official Analytical Chemists. 11th edn, pp. 1718. Washington, DC, USA: AOAC.Google Scholar
Hou, P., Gao, Q., Xie, R. Z., Li, S. K., Meng, Q. F., Kirkby, E. A., Romheld, V., Muller, T., Zhang, F. S., Cui, Z. L. & Chen, X. P. (2012). Grain yields in relation to N requirement: optimizing nitrogen management for spring maize grown in China. Field Crops Research 129, 16.CrossRefGoogle Scholar
Kaneta, Y., Awasaki, H. & Murai, Y. (1994). The non-tillage rice culture by single application of fertilizer in a nursery box with controlled-release fertilizer. Japanese Journal of Soil Science and Plant Nutrition 65, 385391 (In Japanese).Google Scholar
Li, F. M., Guo, A. H. & Wei, H. (1999). Effects of clear plastic film mulch on yield of spring wheat. Field Crops Research 63, 7986.Google Scholar
Li, R., Hou, X. Q., Jia, Z. K., Han, Q. F., Ren, X. L. & Yang, B. P. (2013). Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agricultural Water Management 116, 101109.Google Scholar
Liu, J. L., Zhan, A., Bu, L. D., Zhu, L., Luo, S. S., Chen, X. P., Cui, Z. L., Li, S. Q., Hill, R. L. & Zhao, Y. (2014). Understanding dry matter and nitrogen accumulation for high-yielding film-mulched maize. Agronomy Journal 106, 390396.Google Scholar
Liu, J. L., Zhan, A., Chen, H., Luo, S. S., Bu, L. D., Chen, X. P. & Li, S. Q. (2015). Response of nitrogen use efficiency and soil nitrate dynamics to soil mulching in dryland maize (Zea mays L.) fields. Nutrient Cycling in Agroecosystems 101, 271283.CrossRefGoogle Scholar
Liu, Y., Yang, S. J., Li, S. Q., Chen, X. P. & Chen, F. (2010). Growth and development of maize (Zea may L.) in response to different field water management practices: resource capture and use efficiency. Agricultural and Forest Meteorology 150, 606613.Google Scholar
Ma, B. L., Dwyer, L. M. & Gregorich, E. G. (1999). Soil nitrogen amendment effects on seasonal nitrogen mineralization and nitrogen cycling in maize production. Agronomy Journal 91, 10031009.Google Scholar
Meisinger, J. (1984). Evaluating plant available nitrogen in soil-crop system. In Nitrogen in Crop Production (Ed. Hauck, R. D.), pp. 391416. Madison, WI, USA: ASA, CSSA, and SSSA.Google Scholar
Meng, Q. F., Hou, P., Wu, L., Chen, X. P., Cui, Z. L. & Zhang, F. S. (2013). Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research 143, 9197.CrossRefGoogle Scholar
Meng, Q. F., Yue, S. C., Hou, P., Cui, Z. L. & Chen, X. P. (2016). Improving yield and N use efficiency simultaneously for maize and wheat in China. Pedosphere 26, 137147.CrossRefGoogle Scholar
Nash, P. R., Nelson, K. A., Motavalli, P. P. & Anderson, S. H. (2015). Corn yield response to managed drainage and polymer-coated urea. Agronomy Journal 107, 435441.Google Scholar
Noellsch, A. J., Motavalli, P. P., Nelson, K. A. & Kitchen, N. R. (2009). Corn response to conventional and slow-release nitrogen fertilizers across a claypan landscape. Agronomy Journal 101, 607614.CrossRefGoogle Scholar
Page, A. L., Miller, R. H. & Keeney, D. R. (1982). Methods of Soil Analysis. Part 2. Madison, WI, USA: ASA, SSSA.Google Scholar
Rajcan, I. & Tollenaar, M. (1999). Source: sink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during grain filling. Field Crops Research 60, 245253.Google Scholar
Richter, J. & Roelcke, M. (2000). The N-cycle as determined by intensive agriculture examples from central Europe and China. Nutrient Cycling Agroecosystems 57, 3346.Google Scholar
Ritchie, S. W., Hanaway, J. J. & Benson, G. O. (1989). How A Corn Plant Grows. Special Report no. 48. Ames, IO, USA: Iowa State Extension Service, Iowa State University.Google Scholar
Schimel, D. S. (2010). Drylands in the earth system. Science 327, 418419.Google Scholar
Thompson, T. L., Doerge, T. A. & Godin, R. E. (2000). Nitrogen and water interaction in subsurface drip-irrigated cauliflower: II. Agronomic, economic, and environmental outcomes. Soil Science Society of America Journal 64, 412418.Google Scholar
Tollenaar, M., Ahmadzadeh, A. & Lee, E. A. (2004). Physiological basis of heterosis for grain yield in maize. Crop Science 44, 20862094.Google Scholar
Unger, P. W., Baumhardt, R. L. & Arriga, F. J. (2012). Mulch tillage for conserving soil water. In Soil Water and Agronomic Productivity (Eds Lal, R. and Stewart, B. A.), pp. 427453. Boca Raton, FL, USA: CRC Press.Google Scholar
Wang, S. J., Luo, S. S., Yue, S. C., Shen, Y. F. & Li, S. Q. (2016). Fate of 15N fertilizer under different nitrogen split applications to plastic mulched maize in semiarid farmland. Nutrient Cycling Agroecosystems 105, 129140.Google Scholar
Wang, Y. L., Li, C. H., Tan, J. F., Tan, X., Zhang, X. & Liu, T. X. (2011). Effect of postponing N application on yield, nitrogen absorption and utilization in super-high-yield summer maize. Acta Agronomica Sinica 37, 339347.Google Scholar
Watson, C. (2013). Slow and controlled release and stabilized fertilizers: a growing market. New Agricultural International 9, 3335.Google Scholar
Wu, L., Chen, X. P., Cui, Z. L., Zhang, W. F. & Zhang, F. S. (2014). Establishing a regional nitrogen management approach to mitigate greenhouse gas emission intensity from intensive smallholder maize production. PLoS ONE 9, e98481. https://doi.org/10.1371/journal.pone.0098481 Google Scholar
Wu, S. H., Yin, Y. H., Zheng, D. & Yang, Q. (2005). Aridity/humidity status of land surface in China during the last three decades. Science in China Series D: Earth Sciences 48, 15101518.Google Scholar
Yang, Y. C., Zhang, M., Zheng, L., Cheng, D. D., Liu, M. & Geng, Y. Q. (2011). Controlled release urea improved nitrogen use efficiency, yield, and quality of wheat. Agronomy Journal 103, 479485.CrossRefGoogle Scholar
Ye, Y. S., Liang, X. Q., Chen, Y. X., Liu, J., Gu, J. T., Guo, R. & Li, L. (2013). Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Research 144, 212224.Google Scholar
Zhang, S. L., Li, P. R., Yang, X. Y., Wang, Z. H. & Chen, X. P. (2011). Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil and Tillage Research 112, 9297.CrossRefGoogle Scholar
Zhou, L. M., Li, F. M., Jin, S. L. & Song, Y. J. (2009). How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Research 113, 4147.Google Scholar