Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T04:54:34.025Z Has data issue: false hasContentIssue false

Evaluation of genetic potential of shoot fly resistant sources in sorghum (Sorghum bicolor (L.) Moench)

Published online by Cambridge University Press:  22 December 2008

C. ARUNA*
Affiliation:
National Research Centre for Sorghum, Rajendranagar, Hyderabad 500 030, AP, India
P. G. PADMAJA
Affiliation:
National Research Centre for Sorghum, Rajendranagar, Hyderabad 500 030, AP, India
*
*To whom all correspondence should be addressed. Email: aruna@nrcsorghum.res.in

Summary

Twelve sorghum lines resistant to sorghum shoot fly were evaluated for their combining ability for shoot fly resistance and traits associated with resistance, using three male sterile lines in two environments. Using a completely randomized block design with three replications, 36 hybrids and 15 parental genotypes were raised. Considerable genetic variation was observed for all the traits studied. Non-additive gene effects played an important role in governing glossiness, seedling vigour and proportion of plants with deadhearts. For trichome density, both additive and non-additive gene actions were important. Among the lines evaluated, those identified to be good combiners were SFCR 1047 for seedling vigour, deadheart proportion and trichome density, RSE 03 for glossiness, deadheart proportion at 21 DAE and trichome density, and SPSFR 94032 for seedling vigour and shoot fly eggs per plant. Genetic diversity and cluster analysis grouped the 15 parents (12 resistant and 3 susceptible parents) into five clusters. Utilization of the resistant lines belonging to different clusters in improving shoot fly resistance in sorghum is discussed.

Type
Crops and Soils
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

All India Co-ordinated Sorghum Improvement Project (AICSIP) (2002). Progress report: entomology section. In XXXII Annual Group Meeting held at Acharya NG Agricultural University, Hyderabad, India. 26–28 April 2002.Google Scholar
Agrawal, B. L. & Abraham, C. V. (1985). Breeding sorghum for resistance to shoot fly and midge. In Proceedings of the International Sorghum Entomology Workshop, 15–21 July 1984, Texas A&M University, pp. 371383. College Station, TX: Texas A&M University.Google Scholar
Agrawal, B. L. & House, L. R. (1982). Breeding for pest resistance in sorghum. In Sorghum in the Eighties: Proceedings of the International symposium on sorghum, 2–7 November 1981, pp. 435446. Patancheru, AP, India: ICRISAT.Google Scholar
Deeming, J. C. (1971). Some species of Atherigona rondani (Diptera: Muscidae) from northern Nigeria, with special reference to those injurious to cereal crops. Bulletin of Entomological Research 61, 133190.CrossRefGoogle Scholar
Deshpande, V. P., Kamatar, M. Y., Kathnalli, D. S., Malleshappa, S. M. & Nayakar, N. Y. (2003). Screening of sorghum genotypes against shootfly, Atherigona soccata (Rondani). Indian Journal of Plant Protection 31, 9093.Google Scholar
Dhillon, B. S. (1975). The application of partial diallel crosses in plant breeding – a review. Crop Improvement 2, 17.Google Scholar
Dhillon, M. K. (2004). Effects of cytoplasmic male sterility on expression of resistance to sorghum shoot fly, Atherigona soccata (Rondani). Ph.D. Thesis, Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India.Google Scholar
Dhillon, M. K., Sharma, H. C., Ram Singh & Naresh, J. S. (2005). Mechanisms of resistance to shoot fly, Atherigona soccata in sorghum. Euphytica 144, 301312.CrossRefGoogle Scholar
Dhillon, M. K., Sharma, H. C., Reddy, B. V. S., Singh, R. & Naresh, J. S. (2006). Inheritance of resistance to sorghum shoot fly, Atherigona soccata. Crop Science 46, 13771383.CrossRefGoogle Scholar
FAO (2004). Production Yearbook. Rome, Italy: FAO.Google Scholar
Gravois, K. A. & McNew, R. W. (1993). Genetic relationships and selection for rice yield and yield components. Crop Science 33, 249252.CrossRefGoogle Scholar
Halalli, M. S., Gowda, B. T. S., Kulkarni, K. A. & Goud, J. V. (1982). Inheritance of resistance to shoot fly (Atherigona soccata Rond.) in sorghum (Sorghum bicolor L. Moench). SABRAO Journal 14, 165170.Google Scholar
Indostat Services (2004). Windostat. Hyderabad, India: Indostat Services.Google Scholar
Jadhav, S. S., Mote, U. N. & Bapat, D. R. (1986). Biophysical plant characters contributing to shoot fly resistance. Sorghum Newsletter 29, 70.Google Scholar
Jayanthi, P. D. K., Reddy, B. V. S., Gour, T. B. & Reddy, D. D. R. (1999). Genetics of glossy and trichome characters in sorghum hybrids of cytoplasmic male sterile lines. Journal of Maharashtra Agricultural Universities 24, 251256.Google Scholar
Jayanthi, P. D. K., Reddy, B. V. S., Reddy, D. D. R. & Gour, T. B. (2000). Genetic analysis of shoot fly resistance in sorghum. PKV Research Journal 24, 3541.Google Scholar
Jotwani, M. G., Marawaha, K. K., Srivastava, K. M. & Young, W. R. (1970). Seasonal incidence of shoot fly (Atherigona soccata Rond.) in jowar hybrids at Delhi. Indian Journal of Entomology 32, 715.Google Scholar
Jotwani, M. G. (1983). Losses due to shoot fly in high yielding sorghum. In Crop Losses Due to Insect Pests (Eds Krishnamurthy Rao, B. H. & Murthy, K. S. R. K), pp. 213220. Special issue of Indian Journal of Entomology. Rajendranagar, Hyderabad, India: Entomological Society of India.Google Scholar
Kamatar, M. Y. & Salimath, P. M. (2003). Morphological traits of sorghum associated with resistance to shootfly, Atherigona soccata Rondani. Indian Journal of Plant Protection 31, 7377.Google Scholar
Kempthorne, O. (1957). An Introduction to Genetic Statistics. New York: John Wiley & Sons, Inc.Google Scholar
Kulkarni, N., Hussain Sahib, K. & Murthy, K. N. (1978). Combining ability for shoot fly resistance in sorghum. Indian Journal of Genetics and Plant Breeding 38, 193198.Google Scholar
Kumar, S. & Singh, R. (1996). Combining ability for shoot fly resistance in sorghum. Crop Improvement 23, 217220.Google Scholar
Mahalanobis, P. C. (1930). On the test and measure of group divergence. Proceedings of the Asiatic Society of Bengal 26, 541548.Google Scholar
Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the Natural Institute of Sciences, India, B 2, 4955.Google Scholar
Maiti, R. K. & Bidinger, F. R. (1979). A simple approach to the identification of shoot fly tolerance in sorghum. Indian Journal of Plant Protection 7, 135140.Google Scholar
Maiti, R. K. & Gibson, P. T. (1983). Trichomes in segregating generations of sorghum matings. II. Association with shootfly resistance. Crop Science 23, 7679.CrossRefGoogle Scholar
Manonmani, S. & Fazullah Khan, A. K. (2003). Studies on combining ability and heterosis in rice. Madras Agricultural Journal 90, 228231.Google Scholar
Mote, U. N. (1986). Correlation between the deadhearts caused by shoot fly Atherigona soccata Rondani and the yield of sorghum hybrids. Indian Journal of Entomology 48, 356357.Google Scholar
Nwanze, K. F. (1997). Screening for resistance to sorghum shoot fly. In Plant Resistance to Insects in Sorghum (Eds Sharma, H. C., Singh, F. & Nwanze, K. F.), pp. 3537. Patancheru 502324, AP, India: International Crops Research Institute for the Semi-Arid Tropics.Google Scholar
Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, Cambridge 144, 3143.CrossRefGoogle Scholar
Omori, T., Agrawal, B. L. & House, L. R. (1983). Componential analysis of the factors influencing shoot fly resistance in sorghum (Sorghum bicolor (L.) Moench). Japan Agricultural Research Quarterly 17, 215218.Google Scholar
Phillips, S. L. & Wolfe, M. S. (2005). Evolutionary plant breeding for low input systems. The Journal of Agricultural Science, Cambridge 143, 245254.CrossRefGoogle Scholar
Pradhan, S. & Jotwani, M. G. (1978). Investigations on Insect Pests of Sorghum and Millets with Special Reference to Host Plant Resistance: Final Technical Report (1975–77). Project A7 Ent-120. Research Bulletin No. 2. New Delhi, India: Indian Agricultural Research Institute.Google Scholar
Rana, B. S., Jotwani, M. G. & Rao, N. G. P. (1981). Inheritance of host plant resistance to the sorghum shoot fly. Insect Science and its Applications 2, 105109.Google Scholar
Rana, B. S., Singh, B. U. & Rao, N. G. P. (1985). Breeding for shoot fly and stem borer resistance in sorghum. In Proceedings of the International Sorghum Entomology Workshop, 15–21 July 1984, Texas A&M University, College Station, TX USA, pp. 347360. Patancheru, India: ICRISAT.Google Scholar
Rao, C. R. (1952). Advanced Statistical Methods in Biometrical Research. New York: John Wiley and Sons Inc.Google Scholar
Rao, C. R. (1964). The use and interpretation of principal analysis in applied research. Sankhya 22, 317318.Google Scholar
Sharma, G. C., Jotwani, M. G., Rana, B. S. & Rao, N. G. P. (1977). Resistance to the sorghum shoot fly, Atherigona soccata (Rondani) and its genetic analysis. Journal of Entomological Research 1, 112.Google Scholar
Sharma, H. C., Abraham, C. V., Vidyasagar, P. & Stenhouse, J. W. (1996). Gene action for resistance in sorghum to midge, Contarinia sorghicola. Crop Science 36, 259265.CrossRefGoogle Scholar
Sharma, H. C., Nwanze, K. F. & Subramanian, V. (1997). Mechanisms of resistance to insects and their usefulness in sorghum improvement. In Plant Resistance to Insects in Sorghum (Eds Sharma, H. C., Singh, F. & Nwanze, K. F.), pp. 81100. Patancheru, India: ICRISAT.Google Scholar
Sharma, H. C., Reddy, B. V. S., Dhillon, M. K., Venkateswaran, K., Singh, B. U., Pampapathy, G., Folkertsma, R. T., Hash, C. T. & Sharma, K. K. (2005). Host plant resistance to insects in sorghum: present status and need for future research. E-Journal of SAT Agricultural Research 1, 18. Available online at http://www.icrisat.org/Journal/cropimprovement/v1i1/ismn46/v1i1host.pdf (verified 31 August 2008).Google Scholar
Sharma, H. C., Taneja, S. L., Kameshwara Rao, N. & Prasada Rao, K. E. (2003). Evaluation of Sorghum Germplasm for Resistance to Insect Pests. Information Bulletin No. 63. Patancheru, India: ICRISAT.Google Scholar
Sharma, H. C., Dhillon, M. K., Naresh, J. S., Singh, R., Pampapathy, G. & Reddy, B. V. S. (2004). Influence of cytoplasmic male-sterility on the expression of resistance to insects in sorghum. In Fourth International Crop Science Congress (Eds Fisher, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., Borrell, A. & Lloyd, D.), p. 6. 25 September–2 October 2004, Brisbane, Queensland, Australia.Google Scholar
Singh, S. R., Vedamoorthy, G., Thobbi, V. V., Jotwani, M. G., Young, W. R., Balan, J. S., Srivastava, K. P., Sandhu, G. S. & Krishnananda, N. (1968). Resistance to stem borer, Chilo zonellus (Swinhoe), and stem fly Atherigona varia soccata Rond. in the world sorghum collection in India. Memoirs of the Entomological Society of India 7, 79.Google Scholar
Simmonds, N. W. (1979). Principles of Crop Improvement. London: Longman Group Ltd.Google Scholar
Taneja, S. L. & Leuschner, K. (1985). Resistance screening and mechanisms of resistance in sorghum to shoot fly. In Proceedings of the International Sorghum Entomology Workshop, 15–21 July 1984, Texas A&M University, College Station, TX, USA (Eds Leuschner, K. & Teetes, G. L.), pp. 115129. Patancheru, India: ICRISAT.Google Scholar