Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T19:05:14.990Z Has data issue: false hasContentIssue false

Estimation of genetic parameters for body weight traits and litter size of Moghani sheep, using a Bayesian approach via Gibbs sampling

Published online by Cambridge University Press:  23 February 2010

N. GHAVI HOSSEIN-ZADEH*
Affiliation:
Department of Animal Science, Faculty of Agriculture, University of Guilan, Rasht, P. O. Box 41635-1314, Iran
M. ARDALAN
Affiliation:
Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, P. O. Box 31587-77871, Iran
*
*To whom all correspondence should be addressed. Email: navid.hosseinzadeh@gmail.com or nhosseinzadeh@guilan.ac.ir

Summary

The objective of the present study was to estimate genetic parameters for body weights at different ages and litter size (LS) in Moghani sheep. Traits included were birth weight (BW), 3 months weight (3MW), 6 months weight (6MW), 9 months weight (9MW), yearling weight (YW) and LS. The data of 6659 lambing records and pedigree information used in the current programme were collected at the Breeding Station of Moghani sheep (Ardebil province, Iran) during 1987–2005. Different linear and threshold animal models with additive genetic, maternal genetic, maternal permanent environmental and residual effects were implemented by Gibbs sampling (GS) methodology. A single GS chain with 150 000 rounds was generated by the MTGSAM program. The posterior means of genetic parameters were estimated based on the 1300 samples that were left after elimination of 20 000 rounds in the burn-in period and 100 rounds of each thinning interval. Posterior mean estimates of direct heritability were 0·29, 0·13, 0·14, 0·10, 0·31 and 0·10, while those of maternal heritabilities were 0·29, 0·08, 0·11, 0·06, 0·10 and 0·17 for BW, 3MW, 6MW, 9MW, YW and LS, respectively. Genetic correlations among the growth traits and LS were negative for direct genetic and maternal genetic effects. Therefore, selection for increased growth or LS may have a negative genetic effect on the other traits. The medium to high negative estimates of direct–maternal correlations for body weight traits or LS suggest that it would be difficult to improve direct and maternal growth ability jointly for Moghani sheep.

Type
Animals
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abegaz, S., Van Wyk, J. B. & Olivier, J. J. (2005). Model comparisons and genetic and environmental parameter estimates of growth and the Kleiber ratio in Horro sheep. South African Journal of Animal Science 35, 3040.Google Scholar
Bromley, C. M., Snowder, G. D. & Van Vleck, L. D. (2000). Genetic parameters among weight, prolificacy, and wool traits of Columbia, Polypay, Rambouillet, and Targhee sheep. Journal of Animal Science 78, 846858.CrossRefGoogle ScholarPubMed
El Fadilli, M., Michaux, C., Detilleux, J. & Leroy, P. L. (2000). Genetic parameters for growth traits of the Moroccan Timahdit breed of sheep. Small Ruminant Research 37, 203208.CrossRefGoogle Scholar
Gizaw, S., Lemma, S., Komen, H. & Van Arendonk, J. A. M. (2007). Estimates of genetic parameters and genetic trends for liveweight and fleece traits in Menz sheep. Small Ruminant Research 70, 145153.CrossRefGoogle Scholar
Hanford, K. J., Van Vleck, L. D. & Snowder, G. D. (2002). Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristic of Columbia sheep. Journal of Animal Science 80, 30863098.CrossRefGoogle ScholarPubMed
Hanford, K. J., Van Vleck, L. D. & Snowder, G. D. (2003). Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristics of Targhee sheep. Journal of Animal Science 81, 630640.CrossRefGoogle ScholarPubMed
Hanford, K. J., Van Vleck, L. D. & Snowder, G. D. (2005). Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristic of Rambouillet sheep. Small Ruminant Research 57, 175186.CrossRefGoogle Scholar
Ligda, C., Gabriilidis, G., Papadopoulos, T. & Georgoudis, A. (2000). Investigation of direct and maternal genetic effects on birth and weaning weight of Chios lambs. Livestock Production Science 67, 7580.CrossRefGoogle Scholar
Magnabosco, C. U., Lôbo, R. B. & Famula, T. R. (2000). Bayesian influence for genetic parameter estimation on growth traits for Nellore cattle in Brazil, using the Gibbs sample. Journal of Animal Breeding and Genetics 117, 169188.CrossRefGoogle Scholar
Maniatis, N. & Pollott, G. E. (2003). The impact of data structure on genetic (co)variance components of early growth in sheep, estimated using an animal model with maternal effects. Journal of Animal Science 81, 101108.CrossRefGoogle ScholarPubMed
Maria, G. A., Boldman, K. G. & van Vleck, L. D. (1993). Estimates of variances due to direct and maternal effects for growth traits of Romanov sheep. Journal of Animal Science 71, 845849.CrossRefGoogle ScholarPubMed
Maxa, J., Norberg, E., Berg, P. & Milerski, M. (2007). Genetic parameters for body weight, longissimus muscle depth and fat depth for Suffolk sheep in the Czech Republic. Small Ruminant Research 72, 8791.CrossRefGoogle Scholar
Miraei-Ashtiani, S. R., Seyedalian, S. A. R. & Moradi Shahrbabak, M. (2007). Variance components and heritabilities for body weight traits in Sangsari sheep, using univariate and multivariate animal models. Small Ruminant Research 73, 109114.CrossRefGoogle Scholar
Neser, F. W. C., Erasmus, G. J. & van Wyk, J. B. (2001). Genetic parameter estimates for pre-weaning weight traits in Dorper sheep. Small Ruminant Research 40, 197202.CrossRefGoogle ScholarPubMed
Notter, D. R. & Hough, J. D. (1997). Genetic parameter estimates for growth and fleece characteristics in Targhee sheep. Journal of Animal Science 75, 17291737.CrossRefGoogle ScholarPubMed
Raftery, A. E. & Lewis, S. M. (1996). Implementing MCMC. In Markov Chain Monte Carlo in Practice (Eds Gilks, W. R., Richardson, S. & Spiegelhalter, D. J.), pp. 115130. London: Chapman & Hall.Google Scholar
Rashidi, A., Shahrodi, F. E., Nikkhah, A. & Asghari, Y. (1998). Genetic and phenotypic parameters estimate for growth traits in Moghani sheep. Iranian Journal of Agricultural Sciences 29, 227235.Google Scholar
Rashidi, A., Mokhtari, M. S., Safi Jahanshahi, A. & Mohammad Abadi, M. R. (2008). Genetic parameter estimates of pre-weaning growth traits in Kermani sheep. Small Ruminant Research 74, 165171.CrossRefGoogle Scholar
Rosati, A., Mousa, E., Van Vleck, L. D. & Young, L. D. (2002). Genetic parameters of reproductive traits in sheep. Small Ruminant Research 43, 6574.CrossRefGoogle Scholar
Safari, E. & Fogarty, N. M. (2003). Genetic parameters for sheep production traits: estimates from the literature. Technical Bulletin vol. 49. NSW Agriculture, Orange, Australia. Available online at http://www.sheepcrc.org.au/files/pages/industry-tools-and-information/publications/genetics/Genetic_Parameters_entire_report.pdf (verified 19 January 2010).Google Scholar
SAS (2002). SAS User's Guide version 9.1: Statistics. Cary, NC: SAS Institute Inc.Google Scholar
Schaeffer, L. R. (1984). Sire and cow evaluation under multiple trait models. Journal of Dairy Science 67, 15671580.CrossRefGoogle Scholar
Shodja, J., Nosrati, M., Alijani, S. & Pirani, N. (2006). Estimation of genetic and phenotypic parameters for body weight at different ages and yearly wool production in Moghani sheep. (In Persian with English abstract.) Knowledge of Agriculture 57, 153162.Google Scholar
Snyman, M. A., Erasmus, G. J., van Wyk, J. B. & Olivier, J. J. (1995). Direct and maternal (co) variance components and heritability estimates for body weight at different ages and fleece traits in Afrino sheep. Livestock Production Science 44, 229235.CrossRefGoogle Scholar
Toe, F., Rege, J. E. O., Mukasa-Mugerwa, E., Tembely, S., Anindo, D., Baker, R. L. & Lahlou-Kassi, A. (2000). Reproductive characteristics of Ethiopian highland sheep. I. Genetic parameters of testicular measurements in ram lambs and relationship with age at puberty in ewe lambs. Small Ruminant Research 36, 227240.CrossRefGoogle ScholarPubMed
Tosh, J. J. & Kemp, R. A. (1994). Estimation of variance components for lamb weights in three sheep populations. Journal of Animal Science 72, 11841190.CrossRefGoogle ScholarPubMed
Van Tassell, C. P. & Van Vleck, L. D. (1995). A Manual for Use of MTGSAM. A Set of FORTRAN Programs To Apply Gibbs Sampling to Animal Models for Variance Component Estimation. Washington, DC: U. S. Department of Agriculture, Agricultural Research Service.Google Scholar
Vatankhah, M., Moradi Sharebabak, M., Nejati Javarami, A., Miraei-Ashtiani, S. R. & Vaez Torshizi, R. (2004). A review of sheep breeding in Iran. In Proceedings of the First Iranian Congress on Animal and Aquatic Sciences (Eds Nikkhah, A., Vaez, R., Miraei-Ashtiani, S. R., Nejati-Javaremi, A. & Moradi, M.), pp. 591597. Tehran, Iran.Google Scholar
Willham, R. L. (1972). The role of maternal effects in animal breeding, III. Biometrical aspects of maternal effects in animals. Journal of Animal Science 35, 12881293.CrossRefGoogle Scholar