Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T01:10:21.304Z Has data issue: false hasContentIssue false

Effect of corn–soybean meal-based diets with low calcium and available phosphorus in male broilers on performance, tibia criteria and jejunum histomorphology

Published online by Cambridge University Press:  06 May 2024

Osman Olgun
Affiliation:
Department of Animal Science, Agriculture Faculty, Selcuk University, 42130 Konya, Turkey
Yusuf Cufadar
Affiliation:
Department of Animal Science, Agriculture Faculty, Selcuk University, 42130 Konya, Turkey
Esra Tuğçe Gül*
Affiliation:
Department of Animal Science, Agriculture Faculty, Selcuk University, 42130 Konya, Turkey
Seyit Ahmet Gökmen
Affiliation:
Department of Animal Science, Agriculture Faculty, Selcuk University, 42130 Konya, Turkey
Behlül Sevim
Affiliation:
Department of Food Processing, Aksaray Technical Sciences Vocational School, Aksaray University, 68100 Aksaray, Turkey
*
Corresponding author: Esra Tuğçe Gül; Email: esra.gul@selcuk.edu.tr

Abstract

This study was conducted to determine the effect of reducing calcium (Ca) and available phosphorus (AvP) on performance, carcass yield, tibia traits and jejunum histomorphology in broilers. For this purpose, 480 one-day-old Ross 308 male chicks were distributed into four trial groups with eight subgroups. During the starter period, birds were fed with recommended or reduced Ca and AvP contents of 66.7 and 62.5 g/kg, respectively. Calcium and AvP contents of the groups were as follows: control: 8.70 g/kg Ca, 4.40 g/kg AvP for grower and 7.80 g/kg Ca, 3.90 g/kg AvP for finisher; LCP1: 8.30 g/kg Ca, 4.20 g/kg AvP for grower and 7.10 g/kg Ca, 3.50 g/kg AvP for finisher; LCP2: 7.90 g/kg Ca, 4.00 g/kg AvP for grower and 6.00 g/kg Ca, 3.00 g/kg AvP for finisher; LCP3: 7.00 g/kg Ca, 3.80 g/kg for grower and 5.00 g/kg Ca, 3.00 g/kg AvP for finisher. Performance variables have been calculated from the data of each period, and samples were obtained from the slaughtered birds on the final day of the trial (42nd day) for carcass and tibia traits and jejunum histomorphology. Reducing dietary Ca and AvP did not affect the broiler performance, carcass yield and mortality. Tibia ash decreased in LCP2 and LCP3 groups (P < 0.01). Villus width and villus surface area increased in LCP2 and LCP3. Overall, feeding with a diet 100 g/kg lower than the recommended Ca and AvP did not affect performance in broilers, but improved jejunal development.

Type
Animal Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulla, NR, Loh, TC, Akit, H, Sazili, AQ and Foo, HL (2016) Effects of dietary oil sources and calcium: phosphorus levels on growth performance, gut morphology and apparent digestibility of broiler chickens. South African Journal of Animal Science 46, 4253.CrossRefGoogle Scholar
Ajith, S, Shet, D, Ghosh, J, Awachat, VB, Bhat, K, Pal, D and Elangovan, AV (2018) Effect of immobilized fungal phytase on growth performance and bone traits of broilers fed with low dietary calcium and phosphorus. Veterinary World 11, 758764.CrossRefGoogle ScholarPubMed
Akter, M, Graham, H and Iji, PA (2016) Response of broiler chickens to different levels of calcium, non-phytate phosphorus and phytase. British Poultry Science 57, 799809.CrossRefGoogle ScholarPubMed
Anjum, MI, Javaid, S and Nadeem, MA (2018) Effect of supplementing microbial phytase on broiler chicks fed low di-calcium phosphate diets. Pakistan Journal of Zoology 50, 347351.CrossRefGoogle Scholar
AOAC (2005) Animal feed. In Official Methods of Analysis, 18th Edn. Gaithersburg, USA: Association of Official Analytical Chemists, pp. 2748.Google Scholar
Aviagen, R (2019) Ross 308 Nutrition Specifications. Scotland, UK: Aviagen.Google Scholar
Banaszak, M, Biesek, J, Bogucka, J, Dankowiakowska, A, Olszewski, D, Bigorowski, B, Grabovicz, M and Adamski, M (2020) Impact of aluminosilicates on productivity, carcass traits, meat quality, and jejunum morphology of broiler chickens. Poultry Science 99, 71697177.CrossRefGoogle ScholarPubMed
Cardoso, A Jr Rodrigues, PB, Bertechini, AG, Freitas, RTFD, Lima, RRD and Lima, GFR (2010) Levels of available phosphorus and calcium for broilers from 8 to 35 days of age fed rations containing phytase. Revista Brasileira de Zootecnia 39, 12371245.CrossRefGoogle Scholar
Ceylan, N, Koca, S and Golzar Adabi, S (2023) Does modern broilers need less energy for better growth and intestinal development? Journal of Animal Physiology and Animal Nutrition 107, 10931102.CrossRefGoogle ScholarPubMed
Cowieson, AJ and Bedford, MR (2009) The effect of phytase and carbohydrase on ileal amino acid digestibility in monogastric diets: complimentary mode of action? World's Poultry Science Journal 65, 609624.CrossRefGoogle Scholar
Fallah, H, Karimi, A, Sadeghi, A and Behroozi-Khazaei, N (2020) Modelling and optimizing of calcium and non-phytate phosphorus requirements of male broiler chickens from 1 to 21 days of age using response surface methodology. Animal: An International Journal of Animal Bioscience 14, 15981609.CrossRefGoogle ScholarPubMed
Gautier, AE, Walk, CL and Dilger, RN (2017) Influence of dietary calcium concentrations and the calcium-to-non-phytate phosphorus ratio on growth performance, bone characteristics, and digestibility in broilers. Poultry Science 96, 27952803.CrossRefGoogle ScholarPubMed
Ghasemi, P, Toghyani, M and Landy, N (2019) Effects of dietary 1 alpha-hydroxycholecalciferol in calcium and phosphorous-deficient diets on growth performance, tibia related indices and immune responses in broiler chickens. Animal Nutrition 5, 134139.CrossRefGoogle ScholarPubMed
Golzar Adabi, SH, Hajibabaei, A, Casey, NH and Bayraktaroglu, AG (2016) The effects of various dietary vegetable oil sources on villi morphology and liver aldehydes in young layers. South African Journal of Animal Science 46, 6369.CrossRefGoogle Scholar
Gül, ET, Olgun, O, Yıldız, A, Tüzün, AE and Sarmiento-García, A (2022) Use of maca powder (Lepidium meyenii) as feed additive in diets of laying quails at different ages: its effect on performance, eggshell quality, serum, ileum, and bone properties. Veterinary Sciences 9, 418434.CrossRefGoogle ScholarPubMed
Hamdi, M, Perez, JF, Létourneau-Montminy, MP, Franco-Rosselló, R, Aligue, R and Solà-Oriol, D (2018) The effects of microbial phytases and dietary calcium and phosphorus levels on the productive performance and bone mineralization of broilers. Animal Feed Science and Technology 243, 4151.CrossRefGoogle Scholar
Imari, ZK, Hassanabadi, A and Moghaddam, HN (2020) Response of broiler chickens to calcium and phosphorus restriction: effects on growth performance, carcase traits, tibia characteristics and total tract retention of nutrients. Italian Journal of Animal Science 19, 929939.CrossRefGoogle Scholar
Kop-Bozbay, C, Akdag, A, Atan, H and Ocak, N (2021) Body weight of young broilers fed with declining calcium and phosphorus contents during the starter period is irresponsive to changes in the skeleton. Journal of Animal Physiology and Animal Nutrition 105, 747756.CrossRefGoogle ScholarPubMed
Kumar, S, Shang, Y and Kim, WK (2019) Insight into dynamics of gut microbial community of broilers fed with fructooligosaccharides supplemented low calcium and phosphorus diets. Frontiers in Veterinary Science 6, 95.CrossRefGoogle ScholarPubMed
Landy, N and Toghyani, M (2018) Evaluation of one-alpha-hydroxy-cholecalciferol alone or in combination with cholecalciferol in CaP deficiency diets on development of tibial dyschondroplasia in broiler chickens. Animal Nutrition 4, 109112.CrossRefGoogle ScholarPubMed
Martínez-Vallespín, B, Männer, K, Ader, P and Zentek, J (2022) Evaluation of high doses of phytase in a low-phosphorus diet in comparison to a phytate-free diet on performance, apparent ileal digestibility of nutrients, bone mineralization, intestinal morphology, and immune traits in 21-day-old broiler chickens. Animals 12, 1955.CrossRefGoogle Scholar
Mitchell, RD and Edwards, HM Jr (1996) Additive effects of 1,25-dihydroxycholecalciferol and phytase on phytate phosphorus utilization and related parameters in broiler chickens. Poultry Science 75, 111119.CrossRefGoogle ScholarPubMed
Noruzi, H, Hassanabadi, A, Golian, A and Aziz-Aliabadi, F (2022) Effects of dietary calcium and phosphorus restrictions on growth performance, intestinal morphology, nutrient retention, and tibia characteristics in broiler chickens. British Poultry Science 64, 231241.CrossRefGoogle ScholarPubMed
Oikeh, I, Sakkas, P, Blake, DP and Kyriazakis, I (2019) Interactions between dietary calcium and phosphorus level, and vitamin D source on bone mineralization, performance, and intestinal morphology of coccidia-infected broilers. Poultry Science 98, 56795690.CrossRefGoogle Scholar
Olgun, O and Aygun, A (2016) Nutritional factors affecting the breaking strength of bone in laying hens. World's Poultry Science Journal 72, 821832.CrossRefGoogle Scholar
Olyayee, M, Javanmard, A, Janmohammadi, H, Kianfar, R, Alijani, S and Mir Ghelenj, SA (2023) Supplementation of broiler chicken diets with bovine lactoferrin improves growth performance, histological parameters of jejunum and immune-related gene expression. Journal of Animal Physiology and Animal Nutrition 107, 200213.CrossRefGoogle ScholarPubMed
Paiva, D, Walk, C and McElroy, A (2014) Dietary calcium, phosphorus, and phytase effects on bird performance, intestinal morphology, mineral digestibility, and bone ash during a natural necrotic enteritis episode. Poultry Science 93, 27522762.CrossRefGoogle ScholarPubMed
Proszkowiec-Weglarz, M and Angel, R (2013) Calcium and phosphorus metabolism in broilers: effect of homeostatic mechanism on calcium and phosphorus digestibility. Journal of Applied Poultry Research 22, 609627.CrossRefGoogle Scholar
Rodehutscord, M (2013) Determination of phosphorus availability in poultry. World's Poultry Science Journal 69, 687698.Google Scholar
Santos, FS, Tellez, G, Farnell, MB, Balog, JM, Anthony, NB, Pavlidis, HO and Donoghue, AM (2005) Hypobaric hypoxia in ascites resistant and susceptible broiler genetic lines influences gut morphology. Poultry Science 84, 14951498.CrossRefGoogle Scholar
Selle, PH, Ravindran, V, Cowieson, AJ and Bedford, MR (2011) Phytate and Phytase, Enzymes in Farm Animal Nutrition, vol. 2. Wallingford, UK: CAB International, pp. 160205.Google Scholar
Svihus, B (2014) Function of the digestive system. Journal of Applied Poultry Research 23, 306314.CrossRefGoogle Scholar
Tamim, N, Angel, R and Christman, M (2004) Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poultry Science 83, 13581367.CrossRefGoogle ScholarPubMed
Valable, AS, Narcy, A, Duclos, MJ, Pomar, C, Page, G, Nasir, Z, Magnin, M and Létourneau-Montminy, MP (2018) Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal: An International Journal of Animal Bioscience 12, 15551563.CrossRefGoogle ScholarPubMed
Walk, CL, Bedford, MR and McElroy, AP (2012) Influence of limestone and phytase on broiler performance, gastrointestinal pH, and apparent ileal nutrient digestibility. Poultry Science 91, 13711378.CrossRefGoogle ScholarPubMed
Wilkinson, SJ, Bradbury, EJ, Bedford, MR and Cowieson, AJ (2014) Effect of dietary nonphytate phosphorus and calcium concentration on calcium appetite of broiler chicks. Poultry Science 93, 16951703.CrossRefGoogle ScholarPubMed
Wilson, JH and Ruszler, PL (1996) Effects of dietary boron supplementation on laying hens. British Poultry Science 37, 723729.CrossRefGoogle ScholarPubMed
Wu, Y, Yin, X, Wang, Y, Mahmood, T, Shahid, M, Yin, D and Yuan, J (2020) Effect of 2-hydroxy-4-(methylthio) butanoic acid and acidifier on the performance, chyme pH, and microbiota of broilers. Animal Science Journal 91, 13409.CrossRefGoogle ScholarPubMed
Yan, F, Angel, R, Ashwell, C, Mitchell, A and Christman, M (2005) Evaluation of the broiler's ability to adapt to an early moderate deficiency of phosphorus and calcium. Poultry Science 84, 12321241.CrossRefGoogle Scholar
Zanu, HK, Kheravii, SK, Morgan, NK, Bedford, MR and Swick, RA (2020) Interactive effect of 2 dietary calcium and phytase levels on broilers challenged with subclinical necrotic enteritis: part 1 – broiler performance, gut lesions and pH, bacterial counts, and apparent ileal digestibility. Poultry Science 99, 48614873.CrossRefGoogle ScholarPubMed
Zou, X, Ji, J, Qu, H, Wang, J, Shu, DM, Wang, Y, Liu, TF, Li, Y and Luo, CL (2019) Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poultry Science 98, 44494456.CrossRefGoogle ScholarPubMed