Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-19T03:25:35.910Z Has data issue: false hasContentIssue false

CompoCow: a predictive model to estimate variations in body composition and the energy requirements of cull cows during finishing

Published online by Cambridge University Press:  01 April 2008

F. GARCIA*
Affiliation:
INRA, UR1213 Herbivores, F-63122 Saint-Genès Champanelle, France
J. AGABRIEL
Affiliation:
INRA, UR1213 Herbivores, F-63122 Saint-Genès Champanelle, France
*
*To whom all correspondence should be addressed. Email: florence.garcia@clermont.inra.fr

Summary

Cull cows account for a large part of beef consumption in France and are a significant proportion of farm income for dairy (0·10) and beef systems (up to 0·30). On-farm observations highlight considerable variations in cull cow phenotypes in terms of age, frame size, health, physiological status and body condition. Consequently, an important issue for producers of cull cows is the management of feed supply during the finishing period to obtain a satisfactory condition score and conformation prior to slaughter.

New feeding recommendations for cull cows should consider live weight and live weight gain, age, frame size and body condition score (BCS) to estimate the energy requirements. A predictive model, called CompoCow, was developed for this purpose. The present paper describes the CompoCow model by summarizing developments from previous modelling approaches and outlining the assumptions and equations used in the model. CompoCow combines a growth model for the cow during its productive period (3–8 years old) and a model for the finishing period (in days) and was parameterized for Charolais, Limousine and Holstein breeds. Sensitivity analysis highlighted that the outputs of the model were mainly sensitive to initial body weight and expected body weight gain of the animal. The proportion of lipid in live weight gain was related to body weight, BCS and frame size of the animal. The model also accounts for the higher proportion of lipid in live weight gain in Holstein than in Charolais cows. The model was applied to data from Charolais cows. It showed that the proportion of variability explained by CompoCow for energy requirements was higher than the proportion obtained with previous INRA recommendations, 0·78 and 0·67, respectively. CompoCow does not rely on mechanistic relationships, but it appears robust as it accounts correctly for the effects of age and BCS on the requirements.

Type
Modelling Animal Systems Paper
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agabriel, J. & Petit, M. (1987). Recommandations alimentaires pour les vaches allaitantes. Bulletin Technique C.R.Z.V. Theix 70, 153166.Google Scholar
Agabriel, J., Giraud, J. M. & Petit, M. (1986). Détermination et utilisation de la note d'état d'engraissement en élevage allaitant. Bulletin Technique C.R.Z.V. Theix 66, 4350.Google Scholar
Agabriel, J., Garel, J. P., Lassalas, J. & Petit, M. (1991). Engraissement des vaches de réforme du troupeau allaitant en conditions de montagne. INRA Productions Animales 4, 389397.CrossRefGoogle Scholar
Agabriel, J., Petit, M. & Giraud, J. M. (1993). Rumen contents of Charolais cows during the grazing period. Annales de Zootechnie 42, 162.CrossRefGoogle Scholar
Bastien, D. & Brouard-Jabet, S. (2000). Comment raisonner les limites d'âge dans les cahiers des charges: premières références sur l'effet de l'âge à l'abattage des vaches sur la qualité des carcasses. Rencontres Recherches Ruminants 7, 269.Google Scholar
Beranger, C. & Robelin, J. (1978). Estimation du poids du contenu digestif des bovins à partir du poids du contenu du rumen. Annales de Zootechnie 27, 639645.Google Scholar
Birnie, J. W., Agnew, R. E. & Gordon, F. J. (2000). The influence of body condition on the fasting energy metabolism of nonpregnant, nonlactating dairy cows. Journal of Dairy Science 83, 12171223.CrossRefGoogle ScholarPubMed
Bruce, J. M., Broadbent, P. J. & Topps, J. H. (1984). A model of the energy system of lactating and pregnant cows. Animal Production 38, 351362.Google Scholar
Cabaraux, J. F., Dufrasne, I., Roux, M., Istasse, L. & Hornick, J. L. (2005). La production de viande bovine à partir de femelles de réforme. INRA Productions Animales 18, 3748.CrossRefGoogle Scholar
Chilliard, Y., Doreau, M., Bocquier, F. & Lobley, G. E. (1995). Digestive and metabolic adaptations of ruminants to variations in food supply. In Recent developments in the nutrition of herbivores, Proceedings of the IV International Symposium on the Nutrition of Herbivores (Eds Journet, M., Grenet, E., Farce, M. H., Theriez, M., & Demarquilly, C.), pp. 329360. Paris, France: INRA Editions.Google Scholar
De La Torre, A., Gruffat, D., Durand, D., Micol, D., Peyron, A., Scislowski, V. & Bauchart, D. (2006). Factors influencing proportion and composition of CLA in beef. Meat Science 73, 258268.CrossRefGoogle ScholarPubMed
Dumont, R., Roux, M., Agabriel, J., Touraille, C., Bonnemaire, J., Malterre, C. & Robelin, J. (1991). Engraissement des vaches de réforme de race Charolaise – facteurs de variation des performances zootechniques, de la composition tissulaire des carcasses et de la qualité organoleptique de la viande. INRA Productions Animales 4, 271286.CrossRefGoogle Scholar
Dumont, R., Roux, M., Touraille, C., Agabriel, J. & Micol, D. (1997). Engraissement des vaches de réforme de race Charolaise – effet d'un apport de tourteau de lin sur les performances d'engraissement et les propriétés physico-chimiques et sensorielles de la viande. INRA Productions Animales 10, 163174.Google Scholar
Fiems, L. O., Van Caelenbergh, W., Vanacker, J. M., De Campeneere, S. & Seynaeve, M. (2005). Prediction of empty body composition of double-muscled beef cows. Livestock Production Science 92, 249259.CrossRefGoogle Scholar
Garcia, F., Agabriel, J. & Micol, D. (2007). Alimentation des bovins en croissance et à l'engrais. In Alimentation des Bovins, Ovins et Caprins. Besoins des animaux – valeurs des aliments, pp. 89120. Paris, France: Editions Quae.Google Scholar
Geay, Y. & Micol, D. (1988). Alimentation des bovins en croissance et à l'engrais. In Alimentation des Bovins, Ovins et Caprins (Ed. Jarrige, R.), pp. 213248. Paris, France: INRA Editions.Google Scholar
Geay, Y., Micol, D., Robelin, J., Berge, P. & Malterre, C. (1987). Recommandations alimentaires pour les bovins en croissance et à l'engrais. Bulletin Technique C.R.Z.V. Theix 70, 173183.Google Scholar
Houghton, P. L., Lemenager, R. P., Hendrix, K. S., Moss, G. E. & Stewart, T. S. (1990). Effects of body composition, pre and post partum energy intake and stage of production on energy utilisation by beef cows. Journal of Animal Science 68, 14471456.CrossRefGoogle ScholarPubMed
Institut National de la Recherche Agronomique (INRA) (1989). Ruminant Nutrition: Recommended Allowances and Feed Tables (Ed. Jarrige, R.). Montrouge, France: John Libey, Eurotext.Google Scholar
Jenkins, T. G. & Ferrel, C. L. (1997). Changes in proportions of empty body depots and constituents for nine breeds of cattle under various feed availabilities. Journal of Animal Science 75, 95104.CrossRefGoogle ScholarPubMed
Jones, S. D. M. (1983). Tissue growth in young and mature cull Holstein cows fed a high energy diet. Journal of Animal Science 56, 6470.CrossRefGoogle Scholar
Jouven, M., Agabriel, J. & Baumont, R. (2008). A model predicting the seasonal dynamics of intake and production for suckler cows and their calves fed indoors or at pasture. Animal Feed Science and Technology, doi: 10.1016/j.anifeedsci.2007.05.014.CrossRefGoogle Scholar
Malterre, C. (1986). Production de viande de vaches de réforme. In Production de Viande Bovine (Ed. Micol, D.), pp. 247269. Paris, France: INRA Editions.Google Scholar
Malterre, C., Robelin, J., Agabriel, J. & Bordes, P. (1989). Engraissement des vaches de réforme de race Limousine. INRA Productions Animales 2, 325334.CrossRefGoogle Scholar
Offner, A. & Sauvant, D. (2004). Comparative evaluation of the Molly, CNCPS and LES rumen models. Animal Feed Science and Technology 112, 107130.Google Scholar
Ortigues, I., Petit, M. & Agabriel, J. (1993). Influence of body condition on maintenance energy requirements of Charolais cows. Animal Production 57, 4753.Google Scholar
Petit, M. (1988). Alimentation des vaches allaitantes. In Alimentation des Bovins, Ovins et Caprins (Ed. Jarrige, R.), pp. 159184. Paris, France: INRA Editions.Google Scholar
Petit, M., Garel, J.-P., D'Hour, P. & Agabriel, J. (1995). The use of forages by the beef cow herd. In Recent Developments in the Nutrition of Herbivores, Proceedings of the 4th International Symposium on the Nutrition of Herbivores (Eds Journet, M., Grenet, E., Farce, M.-H., Theriez, M. & Demarquilly, C.), pp. 473496. Paris, France: INRA Editions.Google Scholar
Pierret, P., Breuvart, A. & Eisenzaemmer, C. (2002). Variabilité des poids et des conformations de carcasses de femelles bovins Charolaises d'un groupement de producteurs de Bourgogne. Rencontres Recherches Ruminants 9, 272.Google Scholar
Pierret, P., El-Omari, A. & Dumont, R. (2004). Effets des modes de finition des vaches adultes de race Charolaise sur les caractéristiques de qualité des carcasses. Rencontres Recherches Ruminants 11, 123.Google Scholar
Robelin, J. & Daenicke, R. (1980). Variations of net requirements for cattle growth with liveweight, liveweight gain, breed and sex. Annales de Zootechnie 29, 99118.CrossRefGoogle Scholar
Robelin, J., Agabriel, J., Malterre, C. & Bonnemaire, J. (1990). Changes in body composition of mature dry cows of Holstein, Limousin and Charolais breeds during fattening. I. Skeleton, muscles, fatty tissues and offal. Livestock Production Science 25, 199215.CrossRefGoogle Scholar
Roux, M., Dumont, R., Agabriel, J., Bonnemaire, J. & Micol, D. (1993). Engraissement des vaches de réforme de race Charolaise. Effet d'une suralimentation protéique sur les performances d'engraissement et les caractéristiques physico-chimiques musculaires. INRA Productions Animales 6, 237248.CrossRefGoogle Scholar
Ruget, N., Brisson, N., Delecolle, R. & Faivre, R. (2002). Sensitivity analysis of a crop simulation model, STICS, in order to choose the main parameters to be estimated. Agronomie 22, 133158.CrossRefGoogle Scholar
Sanders, J. O. & Cartwright, T. C. (1979 a). A general cattle production systems model. I. Structure of the model. Agricultural Systems 4, 217227.CrossRefGoogle Scholar
Sanders, J. O. & Cartwright, T. C. (1979 b). A general cattle production systems model. II. Procedures used for simulating animal performance. Agricultural Systems 4, 289309.CrossRefGoogle Scholar
SAS Institute Inc. (1999). SAS/STAT User's Guide, Version 8. Cary, NC: SAS Institute Inc.Google Scholar
Vermorel, M., Coulon, J. B. & Journet, M. (1987). Révision du système des unités fourragères (UF). Bulletin Technique C.R.Z.V. Theix 70, 918.Google Scholar
Williams, C. B. & Jenkins, T. G. (1997). Predicting empty body composition and composition of empty body weight changes in mature cattle. Agricultural Systems 53, 125.CrossRefGoogle Scholar
Williams, C. B. & Jenkins, T. G. (2003 a). A dynamic model of metabolizable energy utilization in growing and mature cattle. I. Metabolizable energy utilization for maintenance and support metabolism. Journal of Animal Science 81, 13711381.CrossRefGoogle ScholarPubMed
Williams, C. B. & Jenkins, T. G. (2003 b). A dynamic model of metabolizable energy utilization in growing and mature cattle. II. Metabolizable energy utilization for gain. Journal of Animal Science 81, 13821389.CrossRefGoogle ScholarPubMed
Wright, I. A. & Russel, A. J. F. (1984). The composition and energy content of empty body weight change in mature cattle. Animal Production 39, 365369.Google Scholar