Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T13:20:44.076Z Has data issue: false hasContentIssue false

Chemotaxis of salt-tolerant and sensitive Rhizobium strains to root exudates of lentil (Lens culinaris L.) genotypes and symbiotic N-fixation, proline content and grain yield in saline calcareous soil

Published online by Cambridge University Press:  27 March 2009

R. Rai
Affiliation:
Rajendra Agricultural University, Bihar, Dholi Campus, Dholi-843121 (Muzaffarpur) Bihar, India

Summary

Two Rhizobium strains and five lentil genotypes were most salt-tolerant under various salt stress conditions and strain LC 6 was the most sensitive. Salt-tolerant strains were more antibiotic-resistant and showed higher relative rates of oxidation of carbohydrates and tricarboxilic acid intermediates. The content and concentrations of root exudates of lentil genotypes were different and found to be attractants for the Rhizobium strains. Under salt stress, significant interactions between salt-tolerant strains and genotypes resulted in different responses of nodulation and host plant growth measurements.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armitage, J. P., Josby, D. & Smith, D. G. (1977). A simple, quantitative method for measuring chemotaxis and motility in bacteria. Journal of General Microbiology 102, 199201.CrossRefGoogle Scholar
Baich, A. (1971). The biosynthesis of proline in Escherichia coli, phosphate-dependent glutamate-semialdehyde dehydrogenase (NADP), the second enzyme in the pathway. Biochimica Biophysica Acta 244, 129134.CrossRefGoogle ScholarPubMed
Bergerson, F. J. (1960). Biochemical pathway in legume nodule nitrogen fixation. Bacterial Review 24, 246250.CrossRefGoogle Scholar
Bernstein, L. & Ogata, G. (1966). Effect of salinity on nodulation, nitrogen fixation and growth of soybean and alfalfa. Agronomy Journal 58, 201203.CrossRefGoogle Scholar
Bisseling, T., Been, C., Klugkist, J., Van Kamman, A. & Nadler, K. (1983). Nodule-specific host proteins in effective and ineffective root nodules of Pisum sativum. EMBO Journal 2, 961966.CrossRefGoogle ScholarPubMed
Bowra, B. J. & Dilworth, M. J. (1981). Motility and chemotaxis towards sugars in Rhizobium leguminosarum. Journal of General Microbiology 126, 231235.Google Scholar
Dogra, R. C. & Vyas, S. R. (1978). Oxidative metabolism of a pigmented mutant of Rhizobium meliloti and its revertants. Journal of Applied Bacteriology 44, 117123.CrossRefGoogle Scholar
Gaworzewska, E. T. & Carlile, M. D. (1982). Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants. Journal of General Microbiology 128, 11791188.Google Scholar
Gitte, R. R., Rai, P. V. & Patil, R. B. (1978). Chemotaxis of Rhizobium sp. towards root exudates of Cicer arietinum L. Plant and Soil 50, 553566.CrossRefGoogle Scholar
Hamissa, N. R. (1972). Fertility studies on some legume crops in Egypt. III. Effect of salinity on nodule formation, yield, N and P uptake by some legume crops. Technological Report Series 149, pp. 138146. Vienna: International Atomic Energy Agency.Google Scholar
Haynes, R. H. (1964). Role of and repair mechanism in microbial inactivation and recovery phenomenon. Photochemistry and Photobiology 3, 429450.CrossRefGoogle Scholar
Imbamba, S. K. (1973). Response of cowpea to salinity and 2-chloroethyl trimethyl ammonium chloride (CCC). Plant Physiology 28, 346349.CrossRefGoogle Scholar
Jackson, M. L. (1976). Soil Chemical Analysis, India: Prentice-Hall.Google Scholar
Johnston, A. W. B., Hambrecher, G. & Brewin, N. J. (1981). Rhizobium plasmids: their role in nodulation of legumes. In Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids (ed. Levy, S. B., Clowes, R. C. and Koenig, E. L.), pp. 487497. New York: Plenum Press.CrossRefGoogle Scholar
Kondorosi, A., Kondorosi, E., Banfalvi, Z., Dusha, I. & Bachem, C. (1983). Molecular genetics of symbiotic nitrogen fixation by Rhizobium meliloti. In Plenary Symposia and Symposium Sessions: XVth International Congress of Genetics, pp. 147148. New Delhi: Oxford & IBH.Google Scholar
Lowry, D. H., Rosebrough, N. J., Farr, A. K. & Randall, R. L. (1951). Protein measurement with the folin-phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Maas, E. V. (1984). Crop tolerance. California Agriculture 38, 2021.Google Scholar
Peterson, M. A. & Barns, D. K. (1981). Inheritance of ineffective nodulation and on-nodulation trait in alfalfa. Crop Science 21, 611616.CrossRefGoogle Scholar
Rai, R., Nasar, S. K. T., Singh, S. J. & Prasad, V. (1985). Interaction between Rhizobium strains and lentil (Lens culinaris Linn.) genotypes under salt stress. Journal of Agricultural Science, Cambridge 104, 199205.CrossRefGoogle Scholar
Rai, R. & Prasad, V. (1983). Salinity tolerance of Rhizobium mutants: growth and relative efficiency of symbiotic nitrogen fixation. Soil Biology and Biochemistry 15, 217219.CrossRefGoogle Scholar
Rai, R. & Prasad, V. (1986). Chemotaxis of Cicer Rhizobium strains to root exudates of chick pea (Cicer arietinum L.) genotypes and their interaction response on nodulation, nodulins, leghaemoglobin and grain yield in calcareus soil. Journal of Agricultural Science, Cambridge 107, 7581.CrossRefGoogle Scholar
Rai, R. & Singh, S. N. (1979). Interaction between chick pea (Cicer arietinum L.) genotypes and strains of Rhizobium sp. Journal of Agricultural Science, Cambridge 92, 437441.CrossRefGoogle Scholar
Roberts, G. P. & Brill, W. J. (1981). Genetics and regulation of nitrogen fixation. Annual Review of Microbiology 35, 207235.CrossRefGoogle ScholarPubMed
Schiffman, J. & Lobel, R. (1970). Haemoglobin determination and its value as an early indication of peanut Rhizobium efficiency. Plant and Soil 33, 501512.CrossRefGoogle Scholar
Somogyi, M. (1952). Notes on sugar determination. Journal of Biological Chemistry 195, 1923.CrossRefGoogle Scholar
Valentine, P. C. (1984), Genetic engineering of salinity tolerant plants. California Agriculture 38, 3637.Google Scholar
Verma, D. P. & Long, S. (1983). The molecular biology of the Rhizobium-legume symbiosis. International Review of Cytology 14, 211245.Google Scholar
Verma, D. P. S., Lee, J., Fuller, F. & Bergmann, H. (1983). Leghaemoglobin and nodulin genes: major groups of host genes involved in symbiotic of N2-fixation. In Advances in Nitrogen Fixation Research (ed. Veeger, C. and Newton, W. E.), pp. 557564. Wageningen: Nijhoff/Junk.Google Scholar
Whitney, A. S. (1979). A summary of recent research and training activity of Nif TAL project. In Planning and International Network of Legume Inoculation trails (ed. Harris, S. C.), pp. 104111. Hawaii: College of Tropical Agriculture and Human Resources.Google Scholar
Wilson, J. R. & Norms, D. O. (1970). Some effect of salinity on Glycine max and its Rhizobium symbiosis. Proceedings of the International Grassland Congress 11, 455458.Google Scholar