Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T07:04:30.832Z Has data issue: false hasContentIssue false

Response of Kudzu (Pueraria montana var. lobata) Seedlings and Naturalized Plants to Simulated Herbivory

Published online by Cambridge University Press:  20 January 2017

Matthew J. Frye
Affiliation:
Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716
Judith Hough-Goldstein*
Affiliation:
Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716
Kathleen A. Kidd
Affiliation:
North Carolina Department of Agriculture and Consumer Services, Raleigh, NC 27699
*
Corresponding author's E-mail: jhough@udel.edu

Abstract

We studied the response of naturalized kudzu plants to simulated herbivory at three locations: Delaware (DE), Pennsylvania (PA), and North Carolina (NC). At the DE and PA sites, plant mortality after the first yr was 14 and 50%, respectively, and was highest for plants that had a small starting root crown size. At both sites, 50 and 75% leaf and shoot clipping, and drilling one or two large holes from the root crown into roots, had no effect on aboveground biomass. In NC, all plants survived for 3 yr. Plants subject to 50% vine removal at this site showed significant decrease in aboveground biomass compared to the control, but 50% leaf cutting and root drilling had no effect. In the greenhouse, kudzu seedlings grown in 60 and 100% light compensated for 50% leaf removal, but 75% damage reduced aboveground biomass. Plants survived for 1 to 2 mo in 0% direct light, but only one of 53 plants survived to the end of the experiment. Results suggest that established kudzu plants are able to compensate for biomass removal, seedlings can survive for several weeks without light, and that effective biocontrol might require more than 2 to 3 yr of continuous damage.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abramovitz, J. N. 1983. Pueraria lobata Willd. (Ohwi), Kudzu: Limitations to Sexual Reproduction. M.S. Thesis. College Park, MD: University of Maryland. 60 p.Google Scholar
Anderson, K. I. and Hallett, S. G. 2004. Herbicidal spectrum and activity of Myrothecium verrucaria . Weed Sci. 52:623627.CrossRefGoogle Scholar
Blackwell, J. 1973. The vine that ate the South. Plants and Gardens: Brooklyn Botanical Garden Record 30:2930.Google Scholar
Blossey, B. and Hunt-Joshi, T. R. 2003. Below-ground herbivory by insects: influence on plants and above-ground herbivores. Annu. Rev. Entomol. 48:521547.CrossRefGoogle Scholar
Bonsi, C., Rhoden, E., Woldeghebriel, A., Mount, P., Solaiman, S., Noble, R., Paris, G., McMahon, C., Pearson, H., and Cash, B. 1991. Kudzu–goat interactions—a pilot study. Pages 8488 in Solaiman, S. G. and Hill, W. A., eds. Using Goats to Manage Forest Vegetation: A Regional Inquiry. Tuskegee, AL : Tuskegee University Agricultural Experiment Station.Google Scholar
Boyette, C. D., Weaver, M. A., Hoagland, R. E., and Stetina, K. C. 2008. Submerged culture of a mycelial formulation of a bioherbicidal strain of Myrothecium verrucaria with mitigated mycotoxin production. World J. Microbiol. Biotechnol. 24:27212726.CrossRefGoogle Scholar
Britton, K. O., Orr, D., and Sun, J. H. 2002. Kudzu. Pages 325330 in Van Driesche, R. G., Lyon, S., Blossey, B., Hoddle, M. S., and Reardon, R., eds. Biological Control of Invasive Plants in the Eastern United States. Morgantown, WV : USDA Forest Service Publication FHTET-2002-07.Google Scholar
Everest, J. W., Miller, J. H., Ball, D. M., and Patterson, M. G. 1991. Kudzu in Alabama: History, Uses, and Control. Auburn, AL : Alabama Cooperative Extension. ANR-65. 6 p.Google Scholar
Forseth, I. N. Jr. and Innis, A. F. 2004. Kudzu (Pueraria montana): history, physiology, and ecology combine to make a major ecosystem threat. Crit. Rev. Plant Sci. 23:401413.CrossRefGoogle Scholar
Forseth, I. N. and Teramura, A. H. 1986. Kudzu leaf energy budget and calculated transpiration: the influence of leaflet orientation. Ecology 67:564571.CrossRefGoogle Scholar
Frye, M. J., Hough-Goldstein, J., and Kidd, K. A. 2012. Response of kudzu (Pueraria montana var. lobata) to different types and levels of simulated insect herbivore damage. Biol. Control 61:7177.CrossRefGoogle Scholar
Frye, M. J., Hough-Goldstein, J., and Sun, J. H. 2007. Biology and preliminary host range assessment of two potential kudzu biological control agents. Environ. Entomol. 36:14301440.CrossRefGoogle ScholarPubMed
Gleeson, S. K. and Tilman, D. 1990. Allocation and the transient dynamics of succession on poor soils. Ecology 71:11441155.CrossRefGoogle Scholar
Guretzky, J. A. and Louda, S. M. 1997. Evidence for natural biological control: insects decrease survival and growth of a native thistle. Ecol. Appl. 7:13301340.CrossRefGoogle Scholar
Harrington, T. B., Rader-Dixon, L. T., and Taylor, J. W. Jr. 2003. Kudzu (Pueraria montana) community responses to herbicides, burning, and higher-density loblolly pine. Weed Sci. 51:965974.CrossRefGoogle Scholar
Hayes, R. D. 2006. Soil Survey of Chatham County, North Carolina. Raleigh, NC : USDA Natural Resources Conservation Service. 687 p.Google Scholar
Hickman, J. E., Wu, S., Mickley, L. J., and Lerdau, M. T. 2010. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution. Proc. Natl. Acad. Sci. U. S. A. 107:1011510119.CrossRefGoogle ScholarPubMed
Hunter, M. D. 2001. Out of sight, out of mind: the impacts of root-feeding insects in natural and managed systems. Agric. For. Entomol. 3:319.CrossRefGoogle Scholar
Jarnevich, C. S. and Stohlgren, T. J. 2009. Near term climate change projections for invasive species distributions. Biol. Invasions 11:13731379.CrossRefGoogle Scholar
Kudzu Coalition. 2010. The Coalition to Control Kudzu without Chemicals: Green Solutions Against the Green Invader. http://www.kokudzu.com. Accessed: May 10, 2010.Google Scholar
Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., and Bazzaz, F. A. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10:689710.CrossRefGoogle Scholar
Manrique, V., Cuda, J. P., Overholt, W. A., Williams, D. A., and Wheeler, G. S. 2008. Effect of host–plant genotypes on the performance of three candidate biological control agents of Schinus terebinthifolius in Florida. Biol. Control 47:167171.CrossRefGoogle Scholar
Maschinski, J. and Whitham, T. G. 1989. The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. Am. Nat. 134:119.CrossRefGoogle Scholar
McAvoy, W. A. and Bennett, K. A. 2001. The Flora of Delaware: An Annotated Checklist. Dover, DE : Delaware Department of Natural Resources and Environmental Control. 265 p.Google Scholar
Milbrath, L. R. 2008. Growth and reproduction of invasive Vincetoxicum rossicum and V. nigrum under artificial defoliation and different light environments. Botany 86:12791290.CrossRefGoogle Scholar
Miller, J. H. and Edwards, B. 1983. Kudzu: Where did it come from? And how can we stop it? South. J. Appl. For. 7:165169.CrossRefGoogle Scholar
Mitich, L. W. 2000. Intriguing world of weeds: kudzu [Pueraria lobata (Willd.) Ohwi]. Weed Technol. 14:231235.CrossRefGoogle Scholar
Myers, J. H. and Risley, C. 2000. Why reduced seed production is not necessarily translated into successful biological weed control. Pages 569581 in Spencer, N. R., ed. Proceedings of the X International Symposium on Biological Control of Weeds. Bozeman, MT : Montana State University.Google Scholar
Newton, C. H., Nelson, L. R., Dewalt, S. J., Mikhailova, E. A., Post, C. J., Schlautman, M. A., Cox, S. K., Bridges, W. C., and Hall, K. C. 2008. Solarization for the control of Pueraria montana (kudzu). Weed Res. 48:394397.CrossRefGoogle Scholar
Pappert, R. A., Hamrick, J. L., and Donovan, L. A. 2000. Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, invasive plant of the southeastern United States. Amer. J. Bot. 87:12401245.CrossRefGoogle ScholarPubMed
Pierson, E. A., Mack, R. N., and Black, R. A. 1990. The effect of shading on photosynthesis, growth, and regrowth following defoliation for Bromus tectorum . Oecologia 84:534543.CrossRefGoogle ScholarPubMed
Quinlivan, B. J. 1971. Seed coat impermeability in legumes. J. Aust. Inst. Agric. Sci. 37:283295.Google Scholar
Raghu, S. and Dhileepan, K. 2005. The value of simulating herbivory in selecting effective weed biological control agents. Biol. Control 34:265273.CrossRefGoogle Scholar
SAS. 2008. The SAS System for Windows. Version 9.2. Cary, NC : SAS Institute, Inc.Google Scholar
Snedecor, G. W. and Cochran, W. G. 1980. Statistical Methods. 7th Ed. Ames, IA: Iowa State University Press. 507 p.Google Scholar
Suiter, D. R., Eger, J. E. Jr., Gardner, W. A., Kemerait, R. C., All, J. N., Roberts, P. M., Greene, J. K., Ames, L. M., Buntin, G. D., Jenkins, T. M., and Douce, G. K. 2010. Discovery and distribution of Megacopta cribraria (Hemiptera: Heteroptera: Plataspidae) in northeast Georgia. J. Integrated Pest Manag. 1:14.CrossRefGoogle Scholar
Sun, Y., Ding, J., and Ren, M. 2009. Effects of simulated herbivory and resource availability on the invasive plant, Alternanthera philoxeroides in different habitats. Biol. Control 48:287293.CrossRefGoogle Scholar
Sun, J. H., Liu, Z., Britton, K. O., Cai, P., Orr, D., and Hough-Goldstein, J. 2006. Pest guilds of kudzu, Pueraria montana var. lobata (Fabaceae) in China: a survey of potential insect biocontrol agents. Biol. Control 36:2231.CrossRefGoogle Scholar
Susko, D. J., Mueller, J. P., and Spears, J. F. 2001. An evaluation of methods for breaking seed dormancy in kudzu (Pueraria lobata). Can. J. Bot. 79:197203.Google Scholar
Thomas, L. K. Jr. 2000. Chemical grubbing for control of exotic kudzu-vine. Bartonia 60:7174.Google Scholar
Thomas, M. B. and Reid, A. M. 2007. Are exotic natural enemies an effective way of controlling invasive plants? Trends Ecol. Evol. 22:447452.CrossRefGoogle ScholarPubMed
Van Driesche, R., Hoddle, M., and Center, T. 2008. Control of Pests and Weeds by Natural Enemies: An Introduction to Biological Control. Malden, MA : Blackwell Publishing, Ltd. 473 p.Google Scholar
Van Driesche, R. G., Carruthers, R. I., Center, T., Hoddle, M. S., Hough-Goldstein, J., Morin, L., Smith, L., Wagner, D. L., et al. 2010. Classical biological control for the protection of natural ecosystems. Biol. Control 54:S2S33.CrossRefGoogle Scholar
Walker, B. and Steffen, W. 1997. An Ooverview of the implications of global change for natural and managed terrestrial ecosystems. Conserv. Ecol. 1 (2):2. http://www.consecol.org/vol1/iss2/art2/. Accessed: May 10, 2010.Google Scholar
Wechsler, N. R. 1977. Growth and Physiological Characteristics of Kudzu, Pueraria lobata (Willd.) Ohwi, in Relation to Its Competitive Success. M.S. Thesis. Athens, GA: University of Georgia. 43 p.Google Scholar
Zhang, Y., Hanula, J. L., and Horn, S. 2012. The biology and preliminary host range of Megacopta cribraria (Heteroptera: Plataspidae) and its impact on kudzu growth. Environ. Entomol. 41:4050.CrossRefGoogle ScholarPubMed