Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-10T16:01:33.022Z Has data issue: false hasContentIssue false

Integrated Management of Scotch Broom (Cytisus scoparius) Using Biological Control

Published online by Cambridge University Press:  20 January 2017

Angelica M. Herrera-Reddy*
Affiliation:
U.S. Department of Agriculture–Agricultural Research Service, Exotic and Invasive Weeds Research Unit, 800 Buchanan Street, Albany, CA 94710
Raymond I. Carruthers
Affiliation:
U.S. Department of Agriculture–Agricultural Research Service, Exotic and Invasive Weeds Research Unit, 800 Buchanan Street, Albany, CA 94710
Nicholas J. Mills
Affiliation:
Department of Environmental Science, Policy, and Management, Mulford Hall, University of California, Berkeley, CA 94720
*
Corresponding author's E-mail: angelica.reddy@gmail.com

Abstract

Integrated weed management strategies (IWM) are being advocated and employed to control invasive plants species. In this study, we compared three management strategies (biological control alone [BC], BC with fire [BC + F], and BC with mowing [BC + M]) to determine if physical controls reduce seed production by Scotch broom and interfere with the action of the biological control agent—the Scotch broom seed weevil. We measured seed production and seed predation by the weevil at both pod and plant scale, and seed bank density over two field seasons. We found no difference in the number of seeds per pod among management strategies. However, combining management strategies (BC + M and BC + F) resulted in significant reductions in pods per plant, mature seeds per plant, and seed bank density relative to biological control alone. We did not find differences among management strategies in number of weevils per pod or proportion of seeds predated by the weevil at either pod or whole-plant scale. However, combining management strategies (BC + M and BC + F) resulted in a significant reduction in healthy mature seeds per plant relative to biological control alone. Although both integrated strategies outperformed biological control alone in reducing seed production and the seed bank, with no statistical difference between them, we propose that short-rotation prescribed fire could prove to be a more effective strategy for long-term management of Scotch broom due to its potential for slightly greater depletion of the seed bank.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aarssen, L. W. 1995. Hypotheses for the evolution of apical dominance in plants: implications for the interpretation of overcompensation. Oikos 74:149155.Google Scholar
Ågren, J., Ehrlen, J., and Solbreck, C. 2008. Spatio-temporal variation in fruit production and seed predation in a perennial herb influenced by habitat quality and population size. J. Ecol. 96:334345.Google Scholar
Ainsworth, N. 2003. Integration of herbicides with arthropod biocontrol agents for weed control. Biocontrol Sci. Technol. 13:547570.Google Scholar
Albert, M. J., Iriondo, J. M., Escudero, A., and Torres, E. 2008. Dissecting components of flowering pattern: size effects on female fitness. Bot. J. Linn. Soc. 156:227236.Google Scholar
Alexander, J. M. and D'Antonio, C. M. 2003. Seed bank dynamics of French broom in coastal California grasslands: effects of stand age and prescribed burning on control and restoration. Restor. Ecol. 11:185197.Google Scholar
Andersen, A. 1989. How important is seed predation to recruitment in stable populations of long lived perennials? Oecologia 81:310315.Google Scholar
Andres, L. A. 1979. Biological control—will it solve the broom problem. Fremontia 7:911.Google Scholar
Andres, L. A. and Coombs, E. M. 1995. Scotch broom. Pages 303305 in Nechols, J. R., Andres, L. A., Beardsley, J. W., Goeden, R. D., and Jackson, C. G., eds. Biological Control in the Western United States: Accomplishments and Benefits of Regional Research Project W-84, 1964–1989. Oakland, CA University of California, Division of Agriculture and Natural Resources.Google Scholar
Bazzaz, F. A., Ackerly, D. D., and Reekie, E. G. 2000. Reproductive allocation in plants. Pages 129 in Fenner, M., ed. Seeds: The Ecology of Regeneration in Plant Communities. 2nd ed. New York, NY CABI Publishing.Google Scholar
Bedane, G. M., Gupta, M. L., and George, D. L. 2009. Effect of plant population on seed yield, mass and size of guayule. Ind. Crop. Prod. 29:139144.Google Scholar
Bossard, C. C. 1991 The role of habitat disturbance, seed predation and ant dispersal on establishment of the exotic shrub Cytisus scoparius in California. Am. Midl. Nat. 126:113.Google Scholar
Bossard, C. C. 1993 Seed germination in the exotic shrub Cytisus scoparius (Scotch broom) in California. Madroño 40:4761.Google Scholar
Bossard, C. C. 2000. Cytisus scoparius . Pages 145149 in Bossard, C. C., Randall, J. M., and Hoshovsky, M. C., eds. Invasive Plants of California's Wildlands. Berkeley, CA University of California Press.Google Scholar
Bossard, C. C. and Rejmánek, M. 1994. Herbivory, growth, seed production, and resprouting of an exotic invasive shrub. Biol. Conserv. 67:193200.Google Scholar
Boydston, R. A. and Williams, M. M. 2004. Combined effects of Aceria malherbae and herbicides on field bindweed (Convolvulus arvensis) growth. Weed Sci. 52:297301.Google Scholar
Briese, D. T. 1996. Biological control of weeds and fire management in protected natural areas: are they compatible strategies? Biol. Conserv. 77:135141.Google Scholar
Buckley, Y. M., Rees, M., Paynter, Q., and Lonsdale, M. 2004. Modelling integrated weed management of an invasive shrub in tropical Australia. J. Appl. Ecol. 41:547560.Google Scholar
Caldwell, B. A. 2006. Effects of invasive scotch broom on soil properties in a Pacific coastal prairie soil. Appl. Soil Ecol. 32:149152.Google Scholar
Collier, T. R., Enloe, S. F., Sciegienka, J. K., and Menalled, F. D. 2007. Combined impacts of Ceutorhynchus litura and herbicide treatments for Canada thistle suppression. Biol. Control 43:231236.Google Scholar
Coombs, E. M., Markin, G. P., and Andreas, J. 2008. Release and establishment of the Scotch broom seed beetle, Bruchidius villosus, in Oregon and Washington, USA. Pages 516520 in Julien, M. H., Sforza, R., Bon, M. C., Evans, H. C., Hatcher, P. E., Hinz, H. L., and Rector, B. G., eds. Proceedings of the XII International Symposium on Biological Control of Weeds. Wallingford, U.K. CABI International.Google Scholar
Coombs, E. M. and Pitcairn, M. J. 2004. Brooms. Pages 158168 in Coombs, E. M., Clark, J. K., Piper, G. L., and Cofrancesco, A. F., eds. Biological Control of Invasive Plants in the United States. Corvallis, OR Oregon State University Press.Google Scholar
Crawley, M. J. 2000. Seed predators and plant population dynamics. Pages 167182 in Fenner, M., ed. Seeds: The Ecology of Regeneration in Plant Communities. 2nd ed. New York, NY CABI Publishing.Google Scholar
DiTomaso, J. M., Brooks, M. L., Allen, E. B., Minnich, R., Rice, P. M., and Kyser, G. B. 2006a. Control of invasive weeds with prescribed burning. Weed Technol. 20:535548.Google Scholar
DiTomaso, J. M., Kyser, G. B., Miller, J. R., Garcia, S., Smith, R. F., Nader, G., Connor, J. M., and Orloff, S. B. 2006b. Integrating prescribed burning and clopyralid for the management of yellow starthistle (Centaurea solstitialis). Weed Sci. 54:757767.Google Scholar
Donnelly, D. and Hoffmann, J. H. 2004. Utilization of an unpredictable food source by Melanterius ventralis, a seed-feeding biological control agent of Acacia longifolia in South Africa. BioControl 49:225235.Google Scholar
Downey, P. O. 2000. Broom (Cytisus scoparius (L.) Link) and fire: management implications. Plant Prot. Q. 15:178182.Google Scholar
Downey, P. O. and Smith, J. M. B. 2000. Demography of the invasive shrub Scotch broom (Cytisus scoparius) at Barrington Tops, New South Wales: insights for management. Austral Ecol. 25:477485.Google Scholar
Ehrlén, J. 1996. Spatiotemporal variation in predispersal seed predation intensity. Oecologia 108:708713.Google Scholar
Eriksson, O. and Ehrlén, J. 1992. Seed and microsite limitation of recruitment in plant populations. Oecologia 91:360364.Google Scholar
Evans, E. W. 1983. The influence of neighboring host on colonization of prairie milkweeds by a seed-feeding bug. Ecology 64:648653.Google Scholar
Fellows, D. P. and Newton, W. E. 1999. Prescribed fire effects on biological control of leafy spurge. J. Range Manag. 52:489493.Google Scholar
Franklin, J. F. and Dyrness, C. T. 1988. Natural vegetation of Oregon and Washington. Corvallis, OR Oregon State University Press. 464 p.Google Scholar
Haubensak, K. A. and Parker, I. M. 2004. Soil changes accompanying invasion of the exotic shrub Cytisus scoparius in glacial outwash prairies of western Washington [USA]. Plant Ecol. 175:7179.Google Scholar
Henne, D. C., Lindgren, C. J., Gabor, T. S., Murkin, H. R., and Roughley, R. E. 2005. An integrated management strategy for the control of purple loosestrife Lythrum salicaria L. (Lythraceae) in the Netley–Libau Marsh, southern Manitoba. Biol. Control 32:319325.Google Scholar
Hoffmann, J. H. and Moran, V. C. 1998. The population dynamics of an introduced tree, Sesbania punicea, in South Africa, in response to long-term damage caused by different combinations of three species of biological control agents. Oecologia 114:343348.Google Scholar
Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6:6570.Google Scholar
Hosking, J. R. 1992. The impact of seed- and pod-feeding insects on Cytisus scoparius . Pages 4551 in Delfosse, E. S., and Scott, R. R., eds. Proceedings of the VIII International Symposium of Biological Control of Weeds. Melbourne, Australia CSIRO Publishing.Google Scholar
Impson, F. A. C., Moran, V. C., and Hoffmann, J. H. 1999. A review of the effectiveness of seed-feeding bruchid beetles in the biological control of mesquite, Prosopis species (Fabaceae), in South Africa. Af. Entomol. Memoir 1:8188.Google Scholar
Impson, F. A. C., Moran, V. C., and Hoffmann, J. H. 2004. Biological control of an alien tree, Acacia cyclops, in South Africa: impact and dispersal of a seed-feeding weevil, Melanterius servulus . Biol. Control 29:375381.Google Scholar
Jennersten, O. and Nilsson, S. G. 1993. Insect flower visitation frequency and seed production in relation to patch size of Viscaria vulgaris (Caryophyllaceae). Oikos 68:283292.Google Scholar
Julien, M. H. and Griffiths, M. W., eds. 1999. Biological Control of Weeds: A World Catalogue of Agents and their Target Weeds. 4th ed. New York, NY CABI Publishing. 223 p.Google Scholar
Kluth, S., Kruess, A., and Tscharntke, T. 2003. Influence of mechanical cutting and pathogen application on the performance and nutrient storage of Cirsium arvense . J. Appl. Ecol. 40:334343.Google Scholar
Kolb, A., Ehrlen, J., and Eriksson, O. 2007. Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspect. Plant Ecol. Evol. Syst. 9:79100.Google Scholar
Le Maitre, D. C., Krug, R. M., Hoffmann, J. H., Gordon, A. J., and Mgidi, T. N. 2008. Hakea sericea: development of a model of the impacts of biological control on population dynamics and rates of spread of an invasive species. Ecol. Appl. 212:342358.Google Scholar
Lym, R. G. 2005. Integration of biological control agents with other weed management technologies: successes from the leafy spurge (Euphorbia esula) IPM program. Biol. Control 35:366375.Google Scholar
Maron, J. L. and Crone, E. 2006. Herbivory effects on plant abundance, distribution and population growth. Proc. R. Soc. B. 273:25752584.Google Scholar
Maron, J. L. and Gardner, S. N. 2000. Consumer pressure, seed versus safe-site limitation, and plant population dynamics. Oecologia 124:260269.Google Scholar
Mason, T. J. and French, K. 2008. Impacts of a woody invader vary in different vegetation communities. Divers. Distrib. 14:829838.Google Scholar
Moran, V. C., Hoffmann, J. H., and Olckers, T. 2004. Politics and ecology in the management of alien invasive woody trees: the pivotal role of biological control agents that diminish seed production. Pages 434439 in Cullen, J. M., Briese, D. T., Kriticos, D. J., Lonsdale, W. M., Morin, L., and Scott, J. K., eds. Proceedings of the XI International Symposium on Biological Control of Weeds. Canberra, Australia CSIRO Entomology.Google Scholar
Moran, V. C., Hoffmann, J. H., and Zimmermann, H. G. 2005. Biological control of invasive alien plants in South Africa: necessity, circumspection, and success. Front. Ecol. Environ. 3:7783.Google Scholar
Myers, J. H. and Risley, C. 2000. Why reduced seed production is not necessarily translated into successful biological weed control. Pages 569581 in Spencer, N. R., ed. Proceedings of the X international Symposium on Biological Control of Weeds. Bozeman, Montana Montana State University.Google Scholar
Norušis, M. 2005. SPSS 14.0 Statistical Procedures Companion. Upper Saddle River, NJ Prentice Hall Inc. 603 p.Google Scholar
Nurse, R. E., Booth, B. D., and Swanton, C. J. 2003. Predispersal seed predation of Amaranthus retroflexus and Chenopodium album growing in soyabean fields. Weed Res. 43:260268.Google Scholar
Odion, D. C. and Haubensak, A. 1997. Response of French broom to fire. Pages 296307 in Sugihara, N. G., Morales, M., and Morales, T., eds. Fire in California Ecosystems: Integrating Ecology, Prevention, and Management. San Diego, CA Association for Fire Ecology.Google Scholar
Odom, D. I. S., Cacho, O. J., Sinden, J. A., and Griffith, G. R. 2003. Policies for the management of weeds in natural ecosystems: the case of scotch broom (Cytisus scoparius, L.) in an Australian national park. Ecol. Econ. 44:119135.Google Scholar
Ollerton, J. and Lack, A. 1998. Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae). Plant Ecol. 139:3547.Google Scholar
Parker, I. M., Harpole, W., and Dionne, D. 1997. Plant community diversity and invasion of the exotic shrub Cytisus scoparius: testing hypotheses of invasibility and impact. Pages 149161 in Dunn, P., and Kern, E., eds. Ecology and Conservation of the South Puget Sound Prairie Landscape. Seattle, WA The Nature Conservancy.Google Scholar
Parnell, J. R. 1964. The parasite complex of the two seed beetles Bruchidius ater (Marsham) (Coleoptera: Bruchidae) and Apion fuscirostre Fabricius (Coleoptera: Curculionidae). Trans. R. Entomol. Soc. London 116:7388.Google Scholar
Parnell, J. R. 1966. Observations on the population fluctuations and life histories of the beetles Bruchidius ater (Bruchidae) and Apion fuscirostre (Curculionidae) on broom (Sarothamnus scoparius). J. Appl. Ecol. 35:157188.Google Scholar
Parsons, W. T. and Cuthbertson, E. G. 2001. Noxious weeds of Australia. 2nd ed. Collingwood, Australia CSIRO Publishing. 698 p.Google Scholar
Paynter, Q., Csurhes, S. M., Heard, T. A., et al. 2003. Worth the risk? Introduction of legumes can cause more harm than good: an Australian perspective. Aust. Syst. Bot. 16:8188.Google Scholar
Paynter, Q. and Flanagan, G. J. 2004a. Integrated weed management—could we be doing better? Lessons from controlling the invasive wetland shrub, Mimosa pigra . Pages 361369 in Cullen, J. M., Briese, D. T., Kriticos, D. J., Lonsdale, W. M., Morin, L., and Scott, J. K., eds. Proceedings of the XI International Symposium on Biological Control of Weeds. Canberra, Australia CSIRO Entomology.Google Scholar
Paynter, Q. and Flanagan, G. J. 2004b. Integrating herbicide and mechanical control treatments with fire and biological control to manage an invasive wetland shrub, Mimosa pigra . J. Appl. Ecol. 41:615629.Google Scholar
Paynter, Q., Fowler, S. V., Memmott, J., and Shepphard, A. W. 1998. Factors affecting the establishment of Cytisus scoparius in southern France: implications for managing both native and exotic populations. J. Appl. Ecol. 35:582595.Google Scholar
Paynter, Q., Main, A., Gourlay, A. H., Peterson, P. G., Fowler, S. V., and Buckley, Y. M. 2010. Disruption of an exotic mutualism can improve management of an invasive plant: varroa mite, honeybees and biological control of Scotch broom Cytisus scoparius in New Zealand. J. Appl. Ecol. 47:309317.Google Scholar
Pimentel, D., Zuniga, R., and Morrison, D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52:273288.Google Scholar
Radford, I. J., Nicholas, D. M., and Brown, J. R. 2001. Assessment of the biological control impact of seed predators on the invasive shrub Acacia nilotica (Prickly acacia) in Australia. Biol. Control 20:261268.Google Scholar
Raghu, S., Wiltshire, C., and Dhileepan, K. 2005. Intensity of pre-dispersal seed predation in the invasive legume Leucaena leucocephala is limited by the duration of pod retention. Austral Ecol. 30:310318.Google Scholar
Ramula, S., Knight, T. M., Burns, J. H., and Buckley, Y. M. 2008. General guidelines for invasive plant management based on comparative demography of invasive and native plant populations. J. Appl. Ecol. 45:11241133.Google Scholar
Rees, M. and Hill, R. L. 2001. Large-scale disturbances, biological control and the dynamics of gorse populations. J. Appl. Ecol. 38:364377.Google Scholar
Rees, M. and Paynter, Q. 1997. Biological control of Scotch broom: modelling the determinants of abundance and the potential impact of introduced insect herbivores. J. Appl. Ecol. 34:12031221.Google Scholar
Rejmánek, M., Richardson, D. M., Higgins, S. I., Pitcairn, M. J., and Grotkopp, E. 2005. Ecology of invasive plants: state of the art. Pages 104161 in Mooney, H. A., Mack, R. N., McNeely, J. A., Neville, L. E., Schei, P. J., and Waage, J., eds. Invasive Alien Species: A New Synthesis. Washington, DC Island Press.Google Scholar
Richardson, D. M. and Kluge, R. L. 2008. Seed banks of invasive Australian Acacia species in South Africa: role in invasiveness and options for management. Perspect. Plant Ecol. Evol. Syst. 10:161177.Google Scholar
Sanz, M. J. and Gurrea, P. 1999. Life-cycles and competition-avoiding strategies of seed-eating weevil species on broom species (Coleoptera: Curculionidae/Leguminosae: Genisteae). Entomol. Gen. 24:237254.Google Scholar
Schmidt, I. 1997. Fort Lewis Integrated Training Area Management Program. Pages 261269 in Dunn, P., and Kern, E., eds. Ecology and Conservation of the South Puget Sound Prairie Landscape. Seattle, WA The Nature Conservancy.Google Scholar
Sharma, G. P. and Esler, K. J. 2008. Phenotypic plasticity among Echium plantagineum populations in different habitats of Western Cape, South Africa. S. Afr. J. Bot. 74:746749.Google Scholar
Sharma, G. P., Singh, J. S., and Raghubanshi, A. S. 2005. Plant invasions: emerging trends and future implications. Curr. Sci. 88:726734.Google Scholar
Sheppard, A. W., Cullen, J. M., and Aeschlimann, J. P. 1994. Predispersal seed predation on Carduus nutans (Asteraceae) in southern Europe. Acta Oecol. 15:529541.Google Scholar
Sheppard, A. W., Hodge, P., Paynter, Q., and Rees, M. 2002. Factors affecting invasion and persistence of broom Cytisus scoparius in Australia. J. Appl. Ecol. 39:721734.Google Scholar
Sperens, U. 1997. Fruit production in Sorbus aucuparia L. (Rosaceae) and pre-dispersal seed predation by the apple fruit moth (Argyresthia conjugella Zell.). Oecologia 110:368373.Google Scholar
Srinivasan, M. P., Shenoy, K., and Gleeson, S. K. 2007. Population structure of Scotch broom (Cytisus scoparius) and its invasion impacts on the resident plant community in the grassland of Nilgiris, India. Curr. Sci. 93:11081113.Google Scholar
Syrett, P., Fowler, S. V., Coombs, E. M., Hosking, J. R., Markin, G. P., Paynter, Q. E., and Sheppard, A. W. 1999. The potential for biological control of Scotch broom (Cytisus scoparius) (Fabaceae) and related weedy species. Biocontrol News Inf. 20:17N34N.Google Scholar
Szentesi, A. 2006. Pre-dispersal seed predation by Bruchidius villosus (Coleoptera, Bruchidae) in Laburnum anagyroides (Fabaceae, Genisteae). Community Ecol. 7:1322.Google Scholar
Tipping, P. W. 1991. Effects of mowing or spraying Carduus thoermeri on Rhinocyllus conicus . Weed Technol. 5:628631.Google Scholar
Tveten, R. 1996. Fire and community dynamics of Fort Lewis, Washington. Master's thesis. Bellingham, WA Western Washington University. 57 p.Google Scholar
van Klinken, R. D. 2005. Total annual seed loss on a perennial legume through predation by insects: the importance of within-season seed and seed feeder dynamics. Austral Ecol. 30:414425.Google Scholar
van Klinken, R. D. and Flack, L. K. 2008. What limits predation rates by the specialist seed-feeder Penthobruchus germaini on an invasive shrub? J. Appl. Ecol. 45:16001611.Google Scholar
Vitelli, J. S. and Pitt, J. L. 2006. Assessment of current weed control methods relevant to the management of the biodiversity of Australian rangelands. Rangeland J. 28:3746.Google Scholar
Waloff, N. 1966. Scotch broom (Sarothamnus scoparius (L.) Wimmer) and its fauna introduced into the Pacific Northwest of America. J. Appl. Ecol. 3:293310.Google Scholar
Waloff, N. and Richards, O. W. 1977. The effect of insect fauna on growth mortality and natality of broom, Sarothamnus scoparius. J. Appl. Ecol. 14:787798.Google Scholar
Wearne, L. J. and Morgan, J. W. 2004. Community-level changes in Australian subalpine vegetation following invasion by the nonnative shrub Cytisus scoparius . J. Veg. Sci. 15:595604.Google Scholar
Westerman, P. R., Wes, J. S., Kropff, M. J., and Van der Werf, W. 2003. Annual losses of weed seeds due to predation in organic cereal fields. J. Appl. Ecol. 40:824836.Google Scholar
Wilson, R., Beck, K. G., and Westra, P. 2004. Combined effects of herbicides and Sphenoptera jugoslavica on diffuse knapweed (Centaurea diffusa) population dynamics. Weed Sci. 52:418423.Google Scholar
Witkowski, E. T. F. and Garner, R. D. 2008. Seed production, seed bank dynamics, resprouting and long-term response to clearing of the alien invasive Solanum mauritianum in a temperate to subtropical riparian ecosystem. S. Afr. J. Bot. 74:476484.Google Scholar
Zimmermann, H. G., Moran, V. C., and Hoffmann, J. H. 2004. Biological control in the management of invasive alien plants in South Africa, and the role of the Working for Water programme. S. Afr. J. Sci. 100:3440.Google Scholar