Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T00:04:48.597Z Has data issue: false hasContentIssue false

Garlic Mustard (Alliaria petiolata) Removal Method Affects Native Establishment

Published online by Cambridge University Press:  20 January 2017

E. Kathryn Barto*
Affiliation:
Department of Biological Sciences, Wright State University, Dayton, OH 45435
Don Cipollini
Affiliation:
Department of Biological Sciences, Wright State University, Dayton, OH 45435
*
Corresponding author's E-mail: barto@zedat.fu-berlin.de

Abstract

We used a growth chamber experiment with first-year garlic mustard plants to explore the effects of three garlic mustard removal techniques (treatment with glyphosate, pulling out the entire plant, and clipping the shoot) on growth of the native herb pale jewelweed and its associated mycorrhizal fungi. We also explored the effects of activated carbon and mycorrhizal inocula amendments. We monitored plant height, intra- and extraradical mycorrhizal structures, root growth, and the fractal dimension of the root system. Removing as much garlic mustard root tissue as possible by hand pulling plants led to larger jewelweed plants than other removal methods. Activated carbon and mycorrhizal inocula did not improve plant growth.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bais, H. P., Walker, F. R., Stermitz, F. R., Hufbauer, R. A., and Vivanco, J. M. 2002. Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128:11731179.CrossRefGoogle ScholarPubMed
Baskin, J. M. and Baskin, C. C. 1992. Seed germination biology of the weedy biennial Alliaria petiolata . Nat. Areas J 12:191197.Google Scholar
Batten, K. M., Scow, K. M., and Espeland, E. K. 2008. Soil microbial community associated with an invasive grass differentially impacts native plant performance. Microb. Ecol 55:220228.Google Scholar
Bernston, G. M. 1994. Roots systems and fractals: how reliable are calculations of fractal dimensions? Ann. Bot 73:281284.Google Scholar
Bromilow, R. H. and Chamberlain, K. 2000. The herbicide glyphosate and related molecules: physicochemical and structural factors determining their mobility in phloem. Pest Manage. Sci 56:368373.Google Scholar
Callaway, R. M., Cipollini, D., Barto, K., Thelen, G. C., Hallett, S. G., Prati, D., Stinson, K., and Klironomos, J. 2008. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:10431055.Google Scholar
Callaway, R. M., Mahall, B. E., Wicks, C., Pankey, J., and Zabinski, C. 2003. Soil fungi and the effects of an invasive forb on grasses: neighbor identity matters. Ecology 84:129135.Google Scholar
Carlson, A. M. and Gorchov, D. L. 2004. Effects of herbicide on the invasive biennial Alliaria petiolata (garlic mustard) and initial responses of native plants in a southwestern Ohio forest. Restor. Ecol 12:559567.Google Scholar
Dannowski, M. and Block, A. 2005. Fractal geometry and root system structures of heterogeneous plant communities. Plant Soil 272:6176.Google Scholar
D'Antonio, C. and Meyerson, L. A. 2002. Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor. Ecol 10:703713.CrossRefGoogle Scholar
Dorning, M. and Cipollini, D. F. 2006. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol 184:287296.Google Scholar
Eshel, A. 1998. On the fractal dimensions of a root system. Plant, Cell Environ 21:247251.Google Scholar
Fitter, A. H. and Stickland, T. R. 1992. Fractal characterization of root system architecture. Funct. Ecol 6:632635.Google Scholar
Francis, R. and Read, D. J. 1984. Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307:5356.Google Scholar
Friese, C. F. and Allen, M. F. 1991. The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409418.Google Scholar
Giovannetti, M. and Mosse, B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489500.Google Scholar
Graham, J. H., Linderman, R. G., and Menge, J. A. 1982. Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of Troyer citrange. New Phytol 91:183189.CrossRefGoogle Scholar
Greipsson, S. and DiTommaso, A. 2006. Invasive non-native plants alter the occurrence of arbuscular mycorrhizal fungi and benefit from this association. Ecol. Restor 24:236241.Google Scholar
Grigera, M. S., Drijber, R. A., Shores-Morrow, R. H., and Wienhold, B. J. 2007. Distribution of the arbuscular mycorrhizal biomarker C16:1cis11 among neutral, glyco and phospholipids extracted from soil during the reproductive growth of corn. Soil Biol. Biochem 39:15891596.Google Scholar
Hamel, C., Fyles, H., and Smith, D. L. 1990. Measurement of development of endomycorrhizal mycelium using three different vital stains. New Phytol 115:297302.Google Scholar
Haribal, M. and Renwick, J. A. A. 2001. Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata . J. Chem. Ecol 27:15851594.Google Scholar
JMP, Version 7. SAS Institute Inc., Cary, NC, 1989–2007.Google Scholar
Kremer, R. J., Means, N. E., and Kim, S. 2005. Glyphosate affects soybean root exudation and rhizosphere micro-organisms. Int. J. Environ. Anal. Chem 85:11651174.CrossRefGoogle Scholar
Lawrence, J. G., Colwell, A., and Sexton, O. J. 1991. The ecological impact of allelopathy in Ailanthus altissima (Simaroubaceae). Am. J. Bot 78:948958.Google Scholar
McCarthy, B. 1997. Response of a forest understory community to experimental removal of an invasive nonindigenous plant (Alliaria petiolata, Brassicaceae). Pages 117130. In Luken, J. O. and Thieret, L. W. Assessment and Management of Plant Invasions. New York Springer-Verlag.Google Scholar
McCarthy, B. C. and Hanson, S. L. 1998. An assessment of the allelopathic potential of the invasive weed Alliaria petiolata (Brassicaceae). Castanea 63:6873.Google Scholar
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., and Swan, J. A. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495501.Google Scholar
Morse, L. E., Kartesz, J. T., and Kutner, L. S. 1995. Native vascular plants. Pages 205209. In Laroe, E. T., Farris, G. S., Puckett, C. E., Doran, P. D., and Mac, M. J. Our living resources: A report to the nation on the distribution, abundance, and health of U.S. plants, animals and ecosystems. Washington, DC National Biological Service, U.S. Department of the Interior.Google Scholar
Mummey, D. L. and Rillig, M. C. 2006. The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:8190.Google Scholar
Nielsen, K. L., Lynch, J. P., and Weiss, H. N. 1997. Fractal geometry of bean root systems: correlations between spatial and fractal dimension. Am. J. Bot 84:2633.CrossRefGoogle ScholarPubMed
Nielsen, K. L., Miller, C. R., Beck, D., and Lynch, J. P. 1999. Fractal geometry of root systems: field observations of contrasting genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorus regimes. Plant Soil 206:181190.CrossRefGoogle Scholar
Nuzzo, V. 2002. Element Stewardship Abstract for Alliaria petiolata (Alliaria officinalis) Garlic Mustard. Arlington, VA Nature Conservancy. 19.Google Scholar
Nuzzo, V. A. 1996. Impact of dormant season herbicide treatment on the alien herb garlic mustard [Alliaria petiolata (Bieb.) Cavara and Grande] and groundlayer vegetation. Trans. Ill. State Acad. Sci 89:2536.Google Scholar
Nuzzo, V. A. 1991. Experimental control of garlic mustard [Alliaria petiolata (Bieb.) Cavara & Grande] in northern Illinois using fire, herbicide, and cutting. Nat. Areas J 11:158167.Google Scholar
Nuzzo, V. A., McClain, W., and Strole, T. 1996. Fire impact on groundlayer flora in a sand forest 1990–1994. The American Midland Naturalist 136:207221.Google Scholar
Oliver, A. J., Smith, S. E., Nicholas, D. J. D., and Wallace, W. 1983. Activity of nitrate reductase in Trifolium subterraneum: effects of mycorrhizal infection and phosphate nutrition. New Phytol 94:6379.Google Scholar
Pimentel, D. 2002. Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species. Boca Raton CRC Press. 384.Google Scholar
Prati, D. and Bossdorf, O. 2004. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am. J. Bot 91:285288.Google Scholar
Rebek, K. A. and O'Neil, R. J. 2005. Impact of simulated herbivory on Alliaria petiolata survival, growth, and reproduction. Biol. Control 34:283289.Google Scholar
Roberts, K. J. and Anderson, R. C. 2001. Effect of garlic mustard (Alliaria petiolata [Bieb. Cavara & Grande]) extracts on plants and arbuscular mycorrhizal (AM) fungi. Am. Midl. Nat 146:146152.Google Scholar
Seaman, J. W., Walls, S. C., Wise, S. E., and Jaeger, R. G. 1994. Caveat emptor: rank transform methods and interaction. Trends Ecol. Evol 9:261263.Google Scholar
Slaughter, B. S., Hochstedler, W. W., Gorchov, D. L., and Carlson, A. M. 2007. Response of Alliaria petiolata (garlic mustard) to five years of fall herbicide application in a southern Ohio deciduous forest. J. Torrey Bot. Soc 134:1826.Google Scholar
Smith, M., Charvat, I., and Jacobson, R. 1998. Arbuscular mycorrhizae promote establishment of prairie species in a tallgrass prairie restoration. Can. J. Bot./Rev. Can. Bot 76:19471954.Google Scholar
Smith, S. E. and Read, D. J. 1997. Mycorrhizal Symbiosis. 2nd ed. London Elsevier Science Ltd. 605.Google Scholar
Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., Thelen, G. C., Hallett, S. G., Prati, D., and Klironomos, J. N. 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4:07270731.Google Scholar
Tester, M., Smith, S. E., and Smith, F. A. 1987. The phenomenon of “nonmycorrhizal” plants. Can. J. Bot./Rev. Can. Bot 65:419431.Google Scholar
Thompson, J. P. 1994. Inoculation with vesicular-arbuscular mycorrhizal fungi from cropped soil overcomes long-fallow disorder of linseed (Linum usitatissimum L.) by improving P and Zn uptake. Soil Biol. Biochem 26:11331143.Google Scholar
Thompson, J. P. 1987. Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Aust. J. Agric. Res 38:847867.CrossRefGoogle Scholar
Vaughn, S. F. and Berhow, M. A. 1999. Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J. Chem. Ecol 25:24952504.Google Scholar
Vereecken, H. 2005. Mobility and leaching of glyphosate: a review. Pest Manage. Sci 61:11391151.Google Scholar
Vitousek, P. M. and Walker, L. R. 1989. Biological invasion by Myrica fava in Hawai'i: plant demography, nitrogen fixation, ecosystem effects. Ecol. Monogr 59:247265.Google Scholar
Vivrette, N. J. and Muller, C. H. 1977. Mechanism of invasion and dominance of coastal grassland by Mesembryanthemum crystallinum . Ecol. Monogr 47:301318.Google Scholar
Vogelsang, K. M. and Bever, J. D. 2009. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90:399407.Google Scholar
Walk, T. C., Van Erp, E., and Lynch, J. P. 2004. Modelling applicability of fractal analysis to efficiency of soil exploration by roots. Ann. Bot 94:119128.Google Scholar
White, J., Tallaksen, J., and Charvat, I. 2008. The effects of arbuscular mycorrhizal fungal inoculation at a roadside prairie restoration site. Mycologia 100:611.Google Scholar
Witkowski, E. T. F. 1991. Effects of invasive alien acacias on nutrient cycling in the coastal lowlands of the Cape Fynbos. J. Appl. Ecol 28:115.CrossRefGoogle Scholar
Wolfe, B. E., Rodgers, V. L., Stinson, K. A., and Pringle, A. 2008. The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J. Ecol 96:777783.Google Scholar
Wright, S. F. and Morton, J. B. 1989. Detection of vesicular-arbuscular mycorrhizal fungus colonization of roots by using dot-immunoblot assay. Appl. Environ. Microbiol 55:761763.Google Scholar