Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-26T09:53:08.969Z Has data issue: false hasContentIssue false

Wild and Cultivated Potato (Solanum sect. Petota) Escaped and Persistent Outside of its Natural Range

Published online by Cambridge University Press:  20 January 2017

Reinhard Simon
International Potato Center, P.O. Box 1558, La Molina, Lima 12, Peru
Conghua H. Xie
Huazhong Agricultural University, Wuhan 430070, China
Andrea Clausen
Estación Experimental Agropecuaria, Instituto Nacional de Tecnología Agropecuaria (INTA), C.C. 276, 7620 Balcarce, Argentina
Shelley H. Jansky
USDA-ARS, Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706-1590
Dennis Halterman
USDA-ARS, Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706-1598
Tony Conner
New Zealand Institute for Plant and Food Research, Private Bag 4704, Christchurch, New Zealand
Sandra Knapp
Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK
Jennifer Brundage
The University of Maryland, 1423 Animal Sciences Building, College Park, MD 20742
David Symon
State Herbarium of South Australia, Plant Biodiversity Centre, P.O. Box 2732, Kent Town, South Australia 5071, Australia
David Spooner*
USDA-ARS, Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706-1590
Corresponding author's E-mail:


Wild potato contains about 100 species that are native to the Americas from the southwestern United States to central Chile and adjacent Argentina, Uruguay, Paraguay, and southern Brazil. We report the occurrence of naturalized populations of the wild potato Solanum chacoense in seven sites in southern Australia, eastern China, England, New Zealand, the eastern United States, central Peru, and east-central Argentina. Modeling similar climatic niches on the basis of the distribution of S. chacoense from South America shows that observations of naturalized S. chacoense overlap with predicted areas. A literature review reveals that although S. chacoense possesses traits typical of an invasive species, all populations presently appear to be contained near their site of introduction.

Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Literature Cited

Ames, M. and Spooner, D. M. 2008. DNA from herbarium specimens settles a controversy about origins of the European potato. Am. J. Bot 95:252257.Google Scholar
Bae, J., Halterman, D., and Jansky, S. H. 2008. Development of a molecular marker associated with Verticillium wilt resistance in diploid interspecific potato hybrids. Mol. Breed 22:6169.Google Scholar
Bains, P. S., Bisht, V. S., Lynch, D. R., Kawchuk, L. M., and Helgeson, J. P. 1999. Identification of stem soft rot (Erwinia carotovora subspecies atroseptica) resistance in potato. Am. J. Potato Res 76:137141.Google Scholar
Bisgrove, S. R., Simonich, M. T., Smith, N. M., Sattler, A., and Innes, R. W. 1994. A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927933.Google Scholar
Boydston, R. A., Seymour, M. D., Brown, C. R., and Alva, A. K. 2006. Freezing behavior of potato (Solanum tuberosum) tubers in soil. Am. J. Potato Res 83:305315.Google Scholar
Brown, C. R. and Thomas, P. E. 1994. Resistance to potato leafroll virus derived from Solanum chacoense: characterization and inheritance. Euphytica 74:5157.Google Scholar
Brownrigg, R., Minka, T. P., Becker, R. A., and Wilks, A. R. 2007. Maps library for R: Accessed: October 27, 2009.Google Scholar
Brücher, H. 1966. “Wildkartoffeln” in Afrika? Sonderh. Z. Pflanzen 56:147163.Google Scholar
Buso, J. A., Boiteux, L. S., and Peloquin, S. J. 1999a. Comparison of haploid Tuberosum–Solanum chacoense versus Solanum phureja–haploid Tuberosum hybrids as staminate parents of 4x–2x progenies evaluated under distinct crop management systems. Euphytica 109:191199.Google Scholar
Buso, J. A., Boiteux, L. S., and Peloquin, S. J. 1999b. Evaluation under long-day conditions of 4x–2x progenies from crosses between potato cultivars and haploid Tuberosum–Solanum chacoense hybrids. Ann. Appl. Biol 135:3540.Google Scholar
Concibido, V. C., Secor, G. A., and Jansky, S. H. 1994. Evaluation of resistance to Verticillium wilt in diploid, wild potato interspecific hybrids. Euphytica 76:145152.Google Scholar
Correll, D. S. 1962. The potato and its wild relatives. Contr. Texas Res. Found. Bot. Stud 4:1606.Google Scholar
Darwin, C. 1839. Journal of the researches into the geology and natural history of various countries visited by H.M.S. Beagle, under the command of Captain Fitzroy, R.N. from 1832 to 1836. London Henry Colburn.Google Scholar
Den Nijs, T. P. M. and Peloquin, S. J. 1977. 2n gametes in potato species and their function in sexual polyploidization. Euphytica 26:585600.Google Scholar
Drake, J. M., Randin, C., and Guisan, A. 2006. Modelling ecological niches with support vector machines. J. Appl. Ecol 43:424432.Google Scholar
[FAO] Food and Agriculture Organization of the United Nations 2009. Accessed: October 27, 2009.Google Scholar
Ficetola, G. F., Thuiller, W., and Miaud, C. 2007. Prediction and validation of the potential global distribution of a problematic alien invasive species — the American bullfrog. Divers. Distrib 13:476485.Google Scholar
Hawkes, J. G. 1990. The potato: evolution, biodiversity, and genetic resources. Washington, DC Smithsonian Institution Press.Google Scholar
Hawkes, J. G. and Hjerting, J. P. 1969. The potatoes of Argentina, Brazil, Paraguay and Uruguay: a biosystematic study. Oxford Oxford University Press.Google Scholar
Hawkes, J. G. and Hjerting, J. P. 1989. The potatoes of Bolivia: their breeding value and evolutionary relationships. Oxford Oxford University Press.Google Scholar
Hermundstad, S. H. and Peloquin, S. J. 1985. Germplasm enhancement with potato haploids. J. Hered 76:463467.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol 25:19651978.Google Scholar
Hijmans, R., Gavrilenko, T., Stephenson, S., Bamberg, J., Salas, A., and Spooner, D. M. 2007. Geographic and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Glob. Ecol. Biogeogr 16:485495.Google Scholar
Hijmans, R., Guarino, L., Cruz, M., and Rojas, E. 2001. Computer tools for spatial analysis of plant genetic resources: 1 DIVA-GIS. Pl. Gen. Res. Newsl 127:1519.Google Scholar
Hosaka, K. and Hanneman, R. E. Jr. 1998. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor (Sli) gene. Euphytica 99:191197.Google Scholar
Hutten, R. C. B., Schippers, M. G. M., Hermsen, J. G. T., and Jacobsen, E. 1995. Comparative performance of diploid and tetraploid progenies from 2x–2x crosses in potato. Euphytica 81:187192.Google Scholar
Invasive Species Specialist Group 2008. Database. Accessed: Oct 27, 2009.Google Scholar
Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323329.Google Scholar
Kawchuk, L. M., Hachey, J., Lynch, D. R., et al. 2001. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA 98:65116515.Google Scholar
Lawson, D. R., Veilleux, R. E., and Miller, A. R. 1993. Biochemistry and genetics of Solanum chacoense steroidal alkaloids: natural resistance factors to the Colorado potato beetle. Curr. Top. Bot. Res 1:335352.Google Scholar
Lawson, H. M. 1983. True potato seed as arable weeds. Potato Res 26:237246.Google Scholar
Leue, E. F. and Peloquin, S. J. 1980. Selection for 2n gametes and tuberization in Solanum chacoense . Am. Potato J 57:189195.Google Scholar
Lewin-Koh, N. J., Pebesma, E. J., Archer, E., et al. 2008. Maptools library for R. Accessed: October 27, 2009.Google Scholar
Lutman, P. J. W. 1977. Investigations into some aspects of the biology of potatoes as weeds. Weed Res 17:123132.Google Scholar
Lynch, D. R., Kawchuk, L. M., Hachey, J., Bains, P. S., and Howard, R. J. 1997. Identification of a gene conferring high levels of resistance to Verticillium wilt in Solanum chacoense . Plant Dis 81:10111014.Google Scholar
Marks, G. E. 1966. The origin and significance of intraspecific polyploidy: experimental evidence from Solanum chacoense . Evolution 20:552557.Google Scholar
Medeiros, A. C., Loope, L. L., and Chimera, C. G. 1998. Flowering plants and gymnosperms of Haleakala National Park. Honolulu, Hawaii University Of Hawaii at Manoa, Department of Botany Technical Report 120, Pacific Cooperative Studies Unit.Google Scholar
Mendiburu, A. O. and Peloquin, S. J. 1977. Bilateral sexual polyploidization in potatoes. Euphytica 26:573583.Google Scholar
Miller, J. T. and Spooner, D. M. 1996. Introgression of Solanum chacoense (Solanum sect. Petota): upland populations reexamined. Syst. Bot 21:461475.Google Scholar
Ochoa, C. M. 1990. Actual release date 13 June, 1991. The potatoes of South America: Bolivia. New York Cambridge University Press, Cambridge.Google Scholar
Ochoa, C. M. 1999. Las papas de sudamerica: Peru (Parte I). Lima, Peru International Potato Center.Google Scholar
Oswald, B. P. and Nuismer, S. L. 2007. Neopolyploidy and pathogen resistance. Proc. R. Soc. Biol. Sci. Ser. B 274:23932397.Google Scholar
Pandey, K. K. 1962. Interspecific incompatability in Solanum species. Am. J. Bot 49:874882.Google Scholar
Phillips, S. J., Anderson, R. P., and Schapire, R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model 190:231259.Google Scholar
Phillips, S. J., Anderson, R. P., and Schapire, R. E. 2008. Maxent software, version 3.2.1.∼schapire/maxent/. Accessed October 27, 2009.Google Scholar
Quinn, A. A., Mok, D. W. S., and Peloquin, S. J. 1974. Distribution and significance of diplandroids among the diploid Solanums. Am. Potato J 51:1621.Google Scholar
R Development Core Team 2008. R: A Language and Environment for Statistical Computing. Vienna, Austria R Foundation for Statistical Computing.Google Scholar
Randall, R. 2002. A Global Compendium of Weeds. R.G. and F.J. Richardson. Victoria, Australia R.G. and F.J. Richardson.Google Scholar
Rangarajan, A., Miller, A. R., and Veilleux, R. E. 2000. Leptine glycoalkaloids reduce feeding by Colorado potato beetle in diploid Solanum sp. hybrids. J. Am. Soc. Hortic. Sci 125:689693.Google Scholar
Richardson, D. M. and Pysek, P. 2006. Plant invasions: merging the concepts of species invasiveness and community invisibility. Prog. Phys. Geogr 30:409431.Google Scholar
Rossi, M., Goggin, F. L., Milligan, S. B., Kaloshian, I., Ullman, D. E., and Williamson, V. M. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. USA 95:97509754.Google Scholar
Rousselle-Bourgeois, F. and Priou, S. 1995. Screening tuber-bearing Solanum spp. for resistance to soft rot caused by Erwinia carotovora ssp. atroseptica (van Hall) dye. Potato Res 38:111118.Google Scholar
Rudorf, W. 1958. The significance of wild potato species for potato breeding. Eur. Potato J 1:1020.Google Scholar
Sinden, S. L., Sanford, L. L., and Deahl, K. L. 1986. Segregation of leptine glycoalkaloids in Solanum chacoense Bitter. J. Agric. Food Chem 34:372377.Google Scholar
Spooner, D. M., Ames, M., Fajardo, D., and Rodríguez, F. 2009. Species boundaries and interrelationships of Solanum sect. Petota (wild and cultivated potatoes) are drastically altered as a result of PBI-funded research in Abstract, Botany and Mycology 2009 Annual Meeting. Scholar
Spooner, D. M. and Castillo, R. 1997. Reexamination of series relationships of South American wild potatoes (Solanaceae: Solanum sect. Petota): evidence from chloroplast DNA restriction site variation. Am. J. Bot 84:671685.Google Scholar
Spooner, D. M., McLean, K., Ramsay, G., Waugh, R., and Bryan, G. J. 2005. A single domestication for potato based on multilocus AFLP genotyping. Proc. Natl. Acad. Sci. USA 102:14,69414,699.Google Scholar
Spooner, D. M. and Salas, A. 2006. Structure, biosystematics, and genetic resources. Pages 139. In Gopal, J. and Khurana, S. M. eds. Handbook of Potato Production, Improvement, and Post-Harvest Management. Binghampton, NY Haworth's Press.Google Scholar
Ugent, D. 1981. Biogeography and origin of S. acaule Bitter. Phytologia 48:8592.Google Scholar
Valkonen, J. P. T. 1997. Novel resistances to four potyviruses in tuber-bearing potato species, and temperature-sensitive expression of hypersensitive resistance to potato virus Y. Ann. Appl. Biol 130:91104.Google Scholar
Valverde, B. E. 2002. Weed management in Latin America. Pesticide Outlook 13:7981.Google Scholar
Veilleux, R. E., Paz, M. M., and Levy, D. 1997. Potato germplasm for warm climates: genetic enhancement of tolerance to heat stress. Euphytica 98:8392.Google Scholar
Wang, Y., Xie, B., Wan, F., Xiao, Q., and Dai, L. 2007. The potential geographic distribution of Radopholus similis in China. Agric. Sci. China 6:14441449.Google Scholar
Werner, J. E. and Peloquin, S. J. 1991. Yield and tuber characteristics of 4x progeny from 2x × 2x crosses. Potato Res 34:261267.Google Scholar
WorldClim, , 2008. WorldClim—A Global Database. Scholar
Yencho, G. C. K., Stanley, P., Kennedy, G. G., and Sanford, L. L. 2000. Segregation of leptine glycoalkaloids and resistance to Colorado potato beetle (Leptinotarsa decemlineata (Say)) in F2 Solanum tuberosum (4x) × S. chacoense (4x) potato progenies. Am. J. Potato Res 77:167178.Google Scholar