Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-29T21:38:05.061Z Has data issue: false hasContentIssue false

Genetics and Reproduction of Common (Phragmites australis) and Giant Reed (Arundo donax)

Published online by Cambridge University Press:  20 January 2017

Kristin Saltonstall*
Affiliation:
Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Republic of Panamá
Adam Lambert
Affiliation:
Biology Department, Eastern Connecticut State University, Willimantic, CT 06226
Laura A. Meyerson
Affiliation:
University of Rhode Island, 1 Greenhouse Road, Kingston, RI 02881
*
Corresponding author's E-mail: kristin.saltonstall@aya.yale.edu

Abstract

Genetic diversity and reproductive characteristics may play an important role in the invasion process. Here, we review the genetic structure and reproductive characteristics of common reed and giant reed, two of the most aggressive, large-statured invasive grasses in North America. Common reed reproduces both sexually and asexually and has a complex population structure, characterized by three subspecies with overlapping distributions; of which, one is introduced, one native, and the third is of unknown origins. These three subspecies show varying levels of genetic diversity, with introduced common reed having high levels of nuclear diversity, indicating that multiple introductions have likely occurred. In contrast, giant reed has low genetic diversity and appears to reproduce solely via asexual fragments yet is highly aggressive in parts of its introduced range. Both species are well-adapted for growth in human-dominated landscapes, which is presumably facilitated by their rhizomatous growth habit.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahmad, R., Liow, P., Spencer, D. F., and Jasieniuk, M. 2008. Molecular evidence for a single genetic clone of invasive Arundo donax in the United States. Aquat. Bot 88:113120.CrossRefGoogle Scholar
Barney, J. N. and DiTomaso, J. M. 2008. Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:6470.CrossRefGoogle Scholar
Barrett, S. C., Colautti, R. I., and Eckert, C. G. 2008. Plant reproductive systems and evolution during biological invasion. Mol. Ecol 17:373383.CrossRefGoogle ScholarPubMed
Bart, D. and Hartman, J. M. 2002. Environmental constraints on early establishment of Phragmites australis in salt marshes. Wetlands 22:201213.CrossRefGoogle Scholar
Bart, D. and Hartman, J. M. 2003. The role of large rhizome dispersal and low salinity windows in the establishment of common reed, Phragmites australis, in salt marshes: new links to human activities. Estuaries 26:436443.CrossRefGoogle Scholar
Bell, G. 1997. Ecology and management of Arundo donax, and approaches to riparian habitat restoration in Southern California. Pages 103113. In Brock, J. H., Wade, M., Pysek, P., and Green, D. eds. Plant Invasions: Studies from North America and Europe. Leiden, The Netherlands Backhuys.Google Scholar
Boland, J. C. 2006. The importance of layering in the rapid spread of Arundo donax (giant reed). Madrono 53:303312.CrossRefGoogle Scholar
Boose, A. B. and Holt, J. S. 1999. Environmental effects on asexual reproduction in Arundo donax . Weed Res 39:117127.CrossRefGoogle Scholar
Brisson, J., de Blois, S., and Lavoie, C. 2010. Roadsides as invasion pathways for common reed (Phragmites australis). Invasive Plant Sci. Manag. In press.CrossRefGoogle Scholar
Brisson, J., Paradis, E., and Bellavance, M-E. 2008. Evidence of sexual reproduction in the invasive common reed (Phragmites australis subsp. australis; Poaceae) in eastern Canada: a possible consequence of global warming? Rhodora 110:225230.CrossRefGoogle Scholar
Campbell, A. L. 2007. Sexual Reproduction in Non-Native Common Reed, Phragmites australis . M.S. Thesis. Columbus, OH: Ohio State University. 49 p.Google Scholar
Chambers, R. M., Meyerson, L. A., and Saltonstall, K. 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot 64:261273.CrossRefGoogle Scholar
Cheplick, G. P. 1998. Seed dispersal and seedling establishment in grass populations. Pages 84105. In Cheplick, G. P. ed. Population Biology of Grasses. Cambridge, UK Cambridge University Press.CrossRefGoogle Scholar
Clevering, O. A. 1999. Between- and within-population differences in Phragmites australis, 1: the effects of nutrients on seedling growth. Oecologia 121:447457.CrossRefGoogle ScholarPubMed
Clevering, O. A. and Lissner, J. 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis . Aquat. Bot 64:185208.CrossRefGoogle Scholar
Coops, H. and Van der Velde, G. 1995. Seed dispersal, germination and seedling growth of six helophyte species in relation to water-level zonation. Freshw. Biol 34:1320.CrossRefGoogle Scholar
Dudley, T. L. 2000. Noxious wildland weeds of California: Arundo donax . Pages 5358. In Bossard, C., Randall, J., and Hoshovsky, M. eds. Invasive Plants of California's Wildlands. Berkeley, CA University of California Press.Google Scholar
Dudley, T. L. and Collins, B. 1995. Biological invasions in California wetlands: the impacts and control of non-indigenous species in natural areas. Oakland, CA Pacific Institute for Studies in Development, Environment, and Security. 62 p.Google Scholar
Duglosch, K. M. and Parker, I. M. 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol 17:431449.Google Scholar
Ellstrand, N. C. and Roose, M. L. 1987. Patterns of genotypic diversity in clonal plant species. Am. J. Bot 74:123131.CrossRefGoogle Scholar
Ellstrand, N. C. and Schierenbeck, K. A. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants. Proc. Natl. Acad. Sci. U. S. A. 97:70437050.CrossRefGoogle ScholarPubMed
Elton, C. S. 1958. The Ecology of Invasions by Animals and Plants. London Methuen.CrossRefGoogle Scholar
Galinato, M. I. and van der Valk, A. G. 1986. Seed germination traits of annuals and emergents recruited during drawdowns in the Delta Marsh, Manitoba, Canada. Aquat. Bot 26:89102.CrossRefGoogle Scholar
Gervais, C. 1981. Liste annotée de nombres chromosomiques de la flore vasculaire du nord-est de l'Amérique, II. Naturaliste Canadien 108:143152. [In French].Google Scholar
Gervais, C., Trahan, R., Moreno, D., and Drolet, A-M. 1993. Le Phragmites australis au Québec: distribution géographique, nombres chromosomiques et repreduction. Can. J. Bot 71:13861393. [In French].CrossRefGoogle Scholar
Hansen, D. L., Lambertini, C., Jampeetong, A., and Brix, H. 2007. Clone-specific differences in Phragmites australis: effects of ploidy level and geographic origin. Aquat. Bot 86:269279.CrossRefGoogle Scholar
Hansen, R. M. 1978. Shasta ground sloth food habits, Rampart Cave, Arizona. Paleobiology 4:302319.CrossRefGoogle Scholar
Harris, S. W. and Marshall, W. H. 1960. Experimental germination of seed and establishment of seedlings of Phragmites communis . Ecology 41:395.CrossRefGoogle Scholar
Haslam, S. M. 1972. Biological flora of the British Isles: Phragmites communis Trin. J. Ecol 60:585610.CrossRefGoogle Scholar
Holm, L. G. 1991. The world's worst weeds: distribution and biology. Malabar, FL Krieger.Google Scholar
Howard, R. J., Travis, S. E., and Sikes, B. A. 2008. Rapid growth of a Eurasian haplotype of Phragmites australis in a restored brackish marsh in Louisiana, USA. Biol. Invasions 10:369379.CrossRefGoogle Scholar
Jodoin, Y., Lavoie, C., Villeneuve, P., Theriault, M., Beaulieu, J., and Belzile, F. 2008. Highways as corridors and habitats for the invasive common reed Phragmites australis in Quebec, Canada. J. Appl. Ecol 45:459466.CrossRefGoogle Scholar
Johnson, M., Dudley, T., and Burns, C. 2006. Seed production in Arundo donax . Cal-IPC News 14:1213.Google Scholar
Keane, R. M. and Crawley, M. J. 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol 17:164170.CrossRefGoogle Scholar
Keller, B. E. M. 2000. Genetic variation among and within populations of Phragmites australis in the Charles River watershed. Aquat. Bot 66:195208.CrossRefGoogle Scholar
Khudamrongsawat, J., Tayyar, R., and Holt, J. S. 2004. Genetic diversity of giant reed (Arundo donax) in the Santa Ana River, California. Weed Sci 52:395405.CrossRefGoogle Scholar
Kolar, C. S. and Lodge, D. M. 2001. Progress in invasion biology: predicting invaders. Trends Ecol. Evol 16:199204.CrossRefGoogle ScholarPubMed
Koppitz, H., Kuehl, H., Hesse, K., and Kohl, J. G. 1997. Some aspects of the importance of genetic diversity in Phragmites australis (Cav.) Trin. ex Steudel for the development of reed stands. Bot. Acta 110:217223.CrossRefGoogle Scholar
Lambert, A. M. and Casagrande, R. A. 2007. Characteristics of a successful estuarine invader: evidence of self-compatibility in native and non-native lineages of Phragmites australis . Mar. Ecol. Prog. Ser 337:299301.CrossRefGoogle Scholar
Lambert, A. M., Dudley, T. L., and Saltonstall, K. 2010. Ecology and impacts of the large-statured invasive grasses Arundo donax and Phragmites australis in North America. Invasive Plant Sci. Manag 3.this volume.CrossRefGoogle Scholar
Lambert, A. M., Winiarski, K., and Casagrande, R. A. 2007. Distribution and impact of Lipara species on native and exotic Phragmites australis . Aquat. Bot 86:163170.CrossRefGoogle Scholar
Lavergne, S. and Molofsky, J. 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. U. S. A. 104:38833888.CrossRefGoogle ScholarPubMed
League, M. T., Colbert, E. P., Seliskar, D. M., and Gallagher, J. L. 2006. Rhizome growth dynamics of native and exotic haplotypes of Phragmites australis (common reed). Estuaries Coasts 29:269276.CrossRefGoogle Scholar
Lee, C. E. 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol 17:386391.CrossRefGoogle Scholar
Lelong, B., Lavoie, C., Jodoin, Y., and Belzile, F. 2007. Expansion pathways of the exotic common reed (Phragmites australis): a historical and genetic analysis. Divers. Distrib 13:430437.CrossRefGoogle Scholar
Les, D. H. and Philbrick, C. T. 1993. Studies of hybridization and chromosome number variation among aquatic angiosperms: evolutionary implications. Aquat. Bot 44:181228.CrossRefGoogle Scholar
Lewandowski, I., Scurlock, J. M. O., Lindvall, E., and Christou, M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335361.CrossRefGoogle Scholar
Mack, R. N. 2008. Evaluating the credits and debits of a proposed biofuel species: giant reed (Arundo donax). Weed Sci 56:883888.CrossRefGoogle Scholar
Maheu-Giroux, M. and de Blois, S. 2007. Landscape ecology of Phragmites australis invasion in networks of linear wetlands. Landsc. Ecol 22:285301.CrossRefGoogle Scholar
Marks, M., Lapin, B., and Randall, J. 1994. Phragmites australis (P. communis): threats, management, and monitoring. Nat. Areas J 14:285294.Google Scholar
Maron, J. L., Vila, M., Bommarco, R., Elmendorf, S., and Beardsley, P. 2004. Rapid evolution of an invasive plant. Ecol. Monogr 74:261280.CrossRefGoogle Scholar
Mauchamp, A., Blanch, S., and Grillas, P. 2001. Effects of submergence on the growth of Phragmites australis seedlings. Aquat. Bot 69:147164.CrossRefGoogle Scholar
McKee, J. and Richards, A. J. 1996. Variation in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate. New Phytol 133:233243.CrossRefGoogle ScholarPubMed
Meadows, R. E. 2006. Aboveground competition between native and introduced Phragmites in two tidal marsh basins in Delaware. M.S. Thesis. Dover, DE: Delaware State University. 51 p.Google Scholar
Meadows, R. E. and Saltonstall, K. 2007. Distribution of native and introduced Phragmites australis in freshwater and oligohaline tidal marshes of the Delmarva Peninsula and southern New Jersey. J. Torrey Bot. Soc 134:99107.CrossRefGoogle Scholar
Meyerson, L. A. M., Lambert, A. M., and Saltonstall, K. 2010. Continuing invasion fronts of common reed (Phragmites australis) in North America: expansion in the southwestern and Gulf Coast regions. Invasive Plant Sci. Manag 3:515520.CrossRefGoogle Scholar
Meyerson, L. A., Viola, D. V., and Brown, R. N. 2009. Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol. Invasions. (DOI: 10.1007/s10530-10009-19434-10533).CrossRefGoogle Scholar
Neuhaus, D., Kuhl, H., Kohl, J-G., Dorfel, P., and Borner, T. 1993. Investigation on the genetic diversity of Phragmites stands using genomic fingerprinting. Aquat. Bot 45:357364.CrossRefGoogle Scholar
Novak, S. J. and Mack, R. N. 2005. Genetic bottlenecks in alien plant species. Pages 201228. In Sax, D. F., Stachowicz, J. J., and Gaines, S. D. eds. Species Invasions: Insights into Ecology, Evolution, and Biogeography. Sunderland, MA Sinauer.Google Scholar
Orson, R. 1999. A paleoecological assessment of Phragmites australis in New England tidal marshes: changes in plant community structure during the last millennium. Biol. Invasions 1:149158.CrossRefGoogle Scholar
Packett, C. R. and Chambers, R. M. 2006. Distribution and nutrient status of haplotypes of the marsh grass Phragmites australis along the Rappahannock River in Virginia. Estuaries Coasts 29:12221225.CrossRefGoogle Scholar
Pellegrin, D. and Hauber, D. P. 1999. Isozyme variation among populations of the clonal species, Phragmites australis (Cav.) Trin. ex Steudel. Aquat. Bot 63:241259.CrossRefGoogle Scholar
Perdue, R. E. 1958. Arundo donax: source of musical reeds and industrial cellulose. Econ. Bot 12:368404.CrossRefGoogle Scholar
Polunin, O. and Huxley, A. 1987. Flowers of the Mediterranean. London Hogarth.Google Scholar
Ridley, H. N. 1930. The Dispersal of Plants Throughout the World. London L. Reeve.Google Scholar
Rudrappa, T., Bonsall, J., Gallagher, J. L., Seliskar, D. M., and Bais, H. P. 2007. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol 33:18981918.CrossRefGoogle ScholarPubMed
Sakai, A. K., Allendorf, F. W., Holt, J. S., et al. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst 32:305332.CrossRefGoogle Scholar
Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. U. S. A. 99:24452449.CrossRefGoogle ScholarPubMed
Saltonstall, K. 2003a. Genetic variation among North American populations of Phragmites australis: implications for management. Estuaries 26:444451.CrossRefGoogle Scholar
Saltonstall, K. 2003b. Microsatellite variation within and among North American lineages of Phragmites australis . Mol. Ecol 12:16891702.CrossRefGoogle ScholarPubMed
Saltonstall, K., Glennon, K., Barnett, A., Hunter, R. B., and Hunter, K. 2007. Comparison of morphological variation indicative of ploidy level in Phragmites australis (Poaceae) from eastern North America. Rhodora 109:415429.CrossRefGoogle Scholar
Saltonstall, K. and Hauber, D. P. 2007. Notes on Phragmites australis (Poaceae: Arundinoideae) in North America. J. Bot. Res. Inst. Texas 1:385388.Google Scholar
Saltonstall, K., Peterson, P. M., and Soreng, R. J. 2004. Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. SIDA Contrib. Bot 21:683692.Google Scholar
Saltonstall, K. and Stevenson, J. C. 2007. The effect of nutrients on seedling growth of native and introduced Phragmites australis . Aquat. Bot 86:331336.CrossRefGoogle Scholar
Sax, D. F., Stachowicz, J. J., Brown, J. H., et al. 2007. Ecological and evolutionary insights from species invasions. Trends Ecol. Evol 22:465471.CrossRefGoogle ScholarPubMed
Silvertown, J. 2008. The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci 169:157168.CrossRefGoogle Scholar
Soltis, P. S. and Soltis, D. E. 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U. S. A. 97:70517057.CrossRefGoogle ScholarPubMed
Stebbins, G. L. 1974. Flowering plants: evolution above the species level. Cambridge, MA Belknap/Harvard University Press.CrossRefGoogle Scholar
Tucker, G. C. 1990. The genera of Arundinoideae (Gramineae) in the southeastern United States. J. Arnold Arbor 71:145177.CrossRefGoogle Scholar
Vasquez, E. A., Glenn, E. P., Brown, J. J., Guntenspergen, G. R., and Nelson, S. C. 2005. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Mar. Ecol. Prog. Ser 298:18.CrossRefGoogle Scholar
Watson, L. and Dallwitz, M. J. 2008. The Grass Genera of the World: Descriptions, Illustrations, Identification, and Information Retrieval; Including Synonyms, Morphology, Anatomy, Physiology, Phytochemistry, Cytology, Classification, Pathogens, World and Local Distribution, and References. http://delta-intkey.com. Accessed: November 25, 2008.Google Scholar
Wijte, A. H. B. M. and Gallagher, J. L. 1996. Effect of oxygen availability and salinity on early life history stages of salt marsh plants, I: different germination strategies of Spartina alterniflora and Phragmites australis (Poaceae). Am. J. Bot 83:13371342.CrossRefGoogle Scholar
Wijte, A. H. B. M., Mizutani, T., Motamed, E. R., Merryfield, M. L., Miller, D. E., and Alexander, D. E. 2005. Temperature and endogenous factors cause seasonal patterns in rooting by stem fragments of the invasive giant reed, Arundo donax (Poaceae). Int. J. Plant Sci 166:507517.CrossRefGoogle Scholar
Zeidler, A., Jung, S. C., Melchinger, A. E., and Dittrich, P. 1994. The use of DNA fingerprinting in ecological studies of Phragmites australis (Cav.) Trin. ex Steudel. Bot. Acta 107:237242.CrossRefGoogle Scholar