Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-09T04:30:42.442Z Has data issue: false hasContentIssue false

Relationship between cytoskeleton and motility

Published online by Cambridge University Press:  19 September 2011

Andrzej Grȩbecki
Affiliation:
Nencki Institute of Experimental Biology, ul. Pasteura 3, 02093 Warsaw, Poland
Get access

Extract

The presence of microfilaments (MF) and microtubules (MT) in the cytoskeletal systems of unicellular eukaryotes, the differentiations of their fine structure and topography within the cells, as well as the tremendous variety of motile phenomena manifested by Protista, made it impossible to treat the subject systematically and thoroughly during one session. The Symposium concentrated therefore on a few selected topics: the organization of the MF cytoskeleton of free living amoebae, its role in producing endoplasmic flow, cell-to-substratum attachment and ectoplasmic movements, as components of the amoeboid mode of locomotion; the transition from the MF to the MT system in the case of amoeba-flagellate transformation; molecular mechanism of operation of the most specialized MT system, in cilia and flagella; and calmodulin as a likely universal sensor allowing Ca2+ to control the motility. All these subjects were covered by seven lectures.

Type
Research Article
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abercrombie, M. (1980) The crawling movement of metazoan cells. Proc. R. Soc. Land. B207 129147.Google Scholar
Albanesi, J. P., Fujisaki, H., Hammer, J. A., Korn, E. D., Jones, R. and Sheetz, M. P. (1985) Monomeric Acanthamoeba myosins I support movement in vitro. J. biol. Chem. 260, 86498652.CrossRefGoogle ScholarPubMed
Allen, R. D. (1961) A new theory of amoeboid movement and endoplasmic streaming. Expl Cell Res. Suppl. 8, 1731.CrossRefGoogle Scholar
Allen, R. D. (1968) Differences of a fundamental nature among several types of amoeboid movement. Symp. soc. exp. Biol. 22, 151168.Google ScholarPubMed
Allen, R. D. and Allen, N. S. (1978) Cytoplasm streaming in amoeboid movement. A. Rev. Biophys. Bioengng 7, 469495.CrossRefGoogle ScholarPubMed
Allen, R. D., Allen, N. S. and Travis, J. L. (1981) Video-enhanced contrast differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related movements in the reticulo-podial network of Allogromia laticollaris. Cell Motil. 1, 291302.CrossRefGoogle ScholarPubMed
Avolio, J., Lebduska, S. and Satir, P. (1984) Dynein arm substructure and the orientation of arm-microtubule attachments. J. molec. Biol. 173, 389401.CrossRefGoogle ScholarPubMed
Bell, C. W. and Gibbons, I. R. (1982) Structure of the dynein-1 outer arm in sea urchin sperm flagella. J. biol. Chem. 257, 516522.CrossRefGoogle ScholarPubMed
Bell, C. W., Fraser, C., Sale, W. S., Tang, W-J. Y. and Gibbons, I. R. (1982) Preparation and purification of dynein. Meth. Cell Biol. 24, 373397.CrossRefGoogle ScholarPubMed
Bovee, Ë. C. (1964) Morphological differences among pseudopodia of various small amoebae and their functional significance. In Primitive Motile Systems in Cell biology (Edited by Allen, R. D. and Kamiya, N.), pp. 189219. Academic Press, New York.CrossRefGoogle Scholar
Bowser, S. S. and Rieder, C. L. (1985) Evidence that cell surface motility in Allogromia is mediated by cyto-plasmic microtubules. Can. J. Biochem. Cell Biol. 63, 608620.CrossRefGoogle Scholar
Bowser, S. S., Israel, H. A., McGee-Russell, S. M. and Rieder, C. L. (1984) Surface transport properties of reticulopodia: do intracellular and extracellular motility share a common mechanism? Cell Biol. Int. Rep. 8, 10511063.CrossRefGoogle Scholar
Burgess, W. H., Schleicher, M., Eldik, L. J. van and Watter-son, D. M. (1983) Comparative studies of calmodulin. In Calcium and Cell Function (Edited by Cheung, W. Y.), Vol. IV, pp. 209261. Academic Press, New York.Google Scholar
Chao, S. H., Suzuki, Y., Zysk, J. R. and Cheung, W. Y. (1984) Activation of calmodulin by various metal ions as a function of ionic radii. Molec. Pharmac. 26 7582.Google Scholar
Cheung, W. Y. (1984) Calmodulin: its potential role in cell proliferation and heavy metal toxicity. Fedn Proc. Fedn Am. Socs exp. Biol. 43 29952999.Google ScholarPubMed
Cleveland, D. W. (1983) The tubulins: from DNA to RNA to protein and back again. Cell 34, 330332.CrossRefGoogle Scholar
Eckert, R. and Naitoh, Y. (1972) Bioelectric control of locomotion in the ciliates. J. Protozool. 19, 237243.CrossRefGoogle ScholarPubMed
Edds, K. T. (1975) Motility in Echinosphaerium nucleofilum. I. An analysis of particle motions in the axopodia and a direct test of the involvement of the axoneme. J. Cell Biol. 66, 145155.CrossRefGoogle Scholar
Firtel, R. A. (1981) Multigene families encoding actin and tubulin. Cell 24, 67.CrossRefGoogle ScholarPubMed
Fulton, C. and Simpson, P. A. (1976) Selective synthesis and utilization of flagellar tubulin. The multi-tubulin hypothesis. In Cell Motility (Edited by Goldman, R., Pollard, T. and Rosenbaum, J.), pp. 9871005. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
Fulton, C. and Lai, E. Y. (1980) Programmed appearance of translatable mRNAs for two calmodulin-like proteins during cell differentiation in Naegleria. J. Cell Biol. 87, 282a.Google Scholar
*Fulton, C., Lai, E. Y. and Remillard, S. P. (1986) Molecular biology of cytoskeletal proteins in Naegleria. Acta protozool. In press.Google Scholar
Gawlitta, W., Stockem, W., Wehland, J. and Weber, K. (1980) Organization and spatial arrangement of fluorescein-labeled native actin microinjected into normal locomot-ing and experimentally influenced Amoeba proteus. Cell Tiss. Res. 206, 181191.CrossRefGoogle ScholarPubMed
Goldacre, R. J. and Lorch, I. J. (1950) Folding and unfolding of protein molecules in relation to cytoplasmic streaming, amoeboid movement and osmotic work. Nature 166, 487499.CrossRefGoogle ScholarPubMed
*Golz, R. and Hauser, M. (1986) Polymorphic assembly states of Allogromia tubulin. Ada protozool. In press.Google Scholar
Goodenough, U. W. and Heuser, J. E. (1982) Substructure of the outer dynein arm. J. Cell Biol. 95, 798815.CrossRefGoogle ScholarPubMed
Goodenough, U. W. and Heuser, J. E. (1985) Substructure of inner dynein arms, radial spokes and the central pair projection complex of cilia and flagella. J. Cell Biol. 100, 20082018.CrossRefGoogle ScholarPubMed
Grebecka, L. and Hrebenda, B. (1979) Topography of cortical layer in Amoeba proteus as related to the dynamic morphology of moving cell. Acta protozool. 18, 493502.Google Scholar
Grebecka, L. and Grebecki, A. (1981) Testing motor functions of the frontal zone in the locomotion of Amoeba proteus. Cell Biol. Int. Rep. 5, 587594.CrossRefGoogle ScholarPubMed
Grebecki, A. (1965) Role of the Ca2+ ions in the excitability of protozoan cell. Decalcification, recalcification, and the ciliary reversal in Paramecium caudatum. Ada protozool 3, 275289.Google Scholar
Grebecki, A. (1976) Co-axial motion of the semi-rigid cell frame in Amoeba proteus. Acta protozool. 15, 221248.Google Scholar
Grebecki, A. (1980) Behaviour of Amoeba proteus exposed to light-shade difference. Protistologica 16, 103116.Google Scholar
Grebecki, A. (1981) Effects of localized photic stimulation on amoeboid movement and their theoretical implications. Eur. J. Cell Biol. 24, 163175.Google ScholarPubMed
Grebecki, A. (1982) Supramolecular aspects of amoeboid movement. In Progress in Protozoology. Proceedings of the VI International Congress on Protozoology, part 1, pp. 117130.Google Scholar
Grebecki, A. (1984) Relative motion in Amoeba proteus in respect to the adhesion sites. I. Behaviour of monotactic forms and the mechanism of fountain phenomenon. Protoplasma 123, 116134.CrossRefGoogle Scholar
Grebecki, A. (1985) Relative motion in Amoeba proteus in respect to the adhesion sites. II. Ectoplasmic and surface movements in polytactic and heterotactic amoebae. Protoplasma 127, 3145.CrossRefGoogle Scholar
Grebecki, A. (1986a) Two-directional pattern of movements on the cell surface of Amoeba proteus. J. Cell Sci. In press.CrossRefGoogle Scholar
*Grebecki, A. (1986b) Adhesion-dependent cytoskeletal movements in amoebae. Acta protozool. In press.Google Scholar
Gre;becki, A. and Grebecka, L. (1978) Morphodynamic types of Amoeba proteus: aterminological proposal. Protistologica 14, 349358.Google Scholar
Grebecki, A., Grçbecka, L. and Kíopocka, W. (1981) Testing steering functions of the frontal zone in the locomotion of Amoeba proteus. Cell Biol. Int. Rep. 5, 595600.CrossRefGoogle ScholarPubMed
Haberey, M. (1971) Bewegungsverhalten und Untergrund-kontakt von Amoeba proteus. Microskopie 27, 226234.Google ScholarPubMed
Hoffmann, H. U., Stockem, W. and Gruber, B. (1984) Dynamics of the cytoskeleton in Amoeba proteus. II. Influence of different agents on the spatial organization of microinjected fluorescein-labeled actin. Protoplasma 119, 7992.CrossRefGoogle Scholar
Jahn, T. L. (1964) Relative motion in Amoeba proteus. In Primitive Motile Systems in Cell Biology (Edited by Allen, R. D. and Kamiya, N.), pp. 279302. Academic Press, NewYork.CrossRefGoogle Scholar
Jamieson, G. A. Jr, Vanaman, T. C. and Blum, J. J. (1979) Presence of calmodulin in Tetrahymena. Proc. natn. Acad. Sci. U.S.A. 76, 64716475.CrossRefGoogle ScholarPubMed
Jamieson, G. A. Jr, Bronson, D. D., Schachat, F. H. and Vanaman, T. C. (1980) Structure and function relationship among calmodulin and troponin C-like proteins from divergent eukaryotic organisms. Ann. N.Y. Acad. Sci. 356, 113.CrossRefGoogle ScholarPubMed
Johnson, K. A. (1985) Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. A. Rev. Biophys. Chem. 14, 161188.CrossRefGoogle ScholarPubMed
Johnson, K. A. and Wall, J. S. (1983) Structure and molecular weight of the dynein ATPase. J.Cell Biol. 96, 669678.CrossRefGoogle ScholarPubMed
King, C. A., Preston, T. M., Miller, R. H. and Grose, C. (1982) The cell surface in amoeboid locomotion–studies on the role of cell-substrate adhesion. Cell Biol. Int. Rep. 6, 893900.CrossRefGoogle ScholarPubMed
King, C. A., Cooper, L. and Preston, T. M. (1983a) Cell-substrate interactions during amoeboid locomotion of Naegleria gruberi with special reference to alterations in temperature and electrolyte concentration of the medium. Protoplasma 118, 1018.CrossRefGoogle Scholar
King, C. A., Preston, T. M. and Miller, R. H. (1983b) Cell-substrate interactions in amoeboid locomotion–a matched reflection interference and transmission electron microscopy study. Cell Biol. Int. Rep. 7, 641649.CrossRefGoogle Scholar
Klein, H. P. and Stockem, W. (1979) Pinocytosis and locomotion of amoebae. XII. Dynamics and motive force generation during induced pinocytosis in Amoeba proteus. Cell Tiss. Res. 197, 263279.CrossRefGoogle Scholar
Korn, E. D. (1978) Biochemistry of actomyosin-dependent cell motility. Proc. natn. Acad. Sci. U.S.A. 75, 588599.CrossRefGoogle ScholarPubMed
Korn, E. D. (1979) Regulation of the form and function of actin and myosin of non-muscle cells. Acta protozool. 18, 7590.Google Scholar
Korn, E. D. (1980) Biochemistry of actomyosin-dependent cell motility in Acanthamoeba castellani. Soc. gen. Micro-biol. Symp. 30, 253272.Google Scholar
Korohoda, W. (1977) Experimental induction of locomotion in enucleated fragments of Amoeba proteus and its bearing on the theories of amoeboid movement. Cytobiologie 14, 338349.Google Scholar
Korohoda, W. and Stockem, W. (1975) On the nature of hyaline zones in the cytoplasm of Amoebaproteus. Microsc. Acta 77, 129141.Google Scholar
Kowit, J. D. and Fulton, C. (1974) Programmed synthesis of tubulin for the flagella that developduring cell differentiation in Naegleria gruberi. Proc. natn. Acad. Sci. U.S.A. 71, 28772881.CrossRefGoogle ScholarPubMed
Kuźnicki, L. (1966) Role of Ca2+ ions in the excitability of protozoan cell. Calcium factor in the ciliary reversal induced by inorganic cations in Paramecium caudatum. Acta protozool. 4, 241256.Google Scholar
Kuźnicki, L. (1970) Mechanism of the motor responses of Paramecium. Acta protozool. 8, 83118.Google Scholar
Kuźnicki, L. (1973) Excitation-contraction coupling in ciliary reversal. In Progress in Protozoology. Proceedings of the IV International Congress on Protozoology, abstr. 236.Google Scholar
Kuźnicki, L. (1981) Comparison between the ciliary reversal of Paramecium and the rapid reorientation in flagellum position of Euglena. In Progress in Protozoology. Proceedings of the VI International Congress on protozoology, abstr. 208.Google Scholar
*Kuźnicki, L. (1986) Calmodulin regulated processes in protistan motility. Acta protozool. In press.Google Scholar
Kuźnicki, L. and Mikolajczyk, E. (1982) Motility and behaviour: Contributed paper sessionin memory of Professor T. L. Jahn. In Progress in protozoology. Proceedings of the VI International Congress on Protozoology, Part 1, pp. 149157.Google Scholar
Kuźnicki, J., Kuźnicki, L. and Drabikowski, W. (1977) Ca2+–regulation of motility and troponin C-like proteins in Protozoa and Myxomycete. Proceedings of the 6th Meeting of the European Muscle Club, pp. 6768.Google Scholar
Kuźnicki, J., Kuźnicki, L. and Drabikowski, W. (1979) Ca2+–bindingmodulator protein in protozoa and myxomycete. Cell Biol. Int. Rep. 3, 1723.CrossRefGoogle ScholarPubMed
Lai, E. Y., Walsh, C., Wardell, D. and Fulton, C. (1979) Programmed appearance of translatable flagellar tubulin mRNA during cell differentiation in Naegleria. Cell 17, 867878.CrossRefGoogle ScholarPubMed
Maihle, N. J. and Satir, B. H. (1980) Calmodulin in the ciliates Paramecium tetraurelia and Tetrahymena thermo-phila. Ann. N.Y. Acad. Sci. 356, 408409.CrossRefGoogle Scholar
Maihle, N. J., Dedman, J. R., Means, A. R., Chafouleas, J. G. and Satir, B. H. (1981) Presence and indirect immuno-fluorescent localization of calmodulin in Paramecium tetraurelia. J. Cell Biol. 89, 695699.CrossRefGoogle Scholar
Manalan, A. S. and Klee, C. B. (1984) Calmodulin. In Advances in Cyclic nucleotides and Protein Phosphoryl alion Research (Edited by Greengard, P. and Robinson, G. A.), Vol. 18, pp. 227278. Raven Press, New York.Google Scholar
Marme, D. and Dieter, P. (1983) Role of Ca2+ and cal-modulin in plants. In Calciumand Cell Function (Edited by Cheung, W. Y.), Vol. IV, pp. 263311. Academic Press, New York.Google Scholar
Means, A. R., Tash, J. S. and Chafouleas, J. G. (1982) Physiological implications of the presence, distribution and regulation of calmodulin in eukaryotic cells. Physiol. Rev. 62, 139.CrossRefGoogle ScholarPubMed
Mogami, Y. and Takahashi, K. (1983) Calcium and microtubule sliding in ciliary axonemes isolatedfrom Paramecium caudatum. J. Cell Sci. 61, 107121.CrossRefGoogle Scholar
Nasr, T. and Satir, P. (1986) Alloaffinity filtration: A general approach to the purification ofdynein and dynein-like molecules. Analyt. Biochem. In press.CrossRefGoogle Scholar
Opas, M. (1978) Interference reflexion microscopy of adhesion of Amoeba proteus. J. Microsc. 122, 215221.CrossRefGoogle Scholar
Piperno, G. and Luck, D. J. L. (1982) Outer and inner arm dyneins from flagella of Chlamydomonas reinhardtii. Cell Motil. Suppl. 1, 9599.CrossRefGoogle Scholar
Pollard, T. D. (1982) Structure and polymerization of Acanthamoeba myosin II filaments. J. Cell Biol. 95, 816825.CrossRefGoogle Scholar
Pollard, T. D. (1984) Actin-binding protein evolution. Nature 312, 404.CrossRefGoogle ScholarPubMed
Preston, T. M. and King, C. A. (1978) An experimental study of the interaction between the soil amoeba Naegleria gruberi and a glass substrate during amoeboid locomotion. J. Cell Sci. 34, 145158.CrossRefGoogle Scholar
Preston, T. M. and King, C. A. (1984) Amoeboid locomotion of Acanthamoeba castellani withspecial reference to cell-substratum interactions. J. gen. Microbiol. 130, 23172324.Google Scholar
Rinaldi, R. A. and Jahn, T. L. (1963) On the mechanism of amoeboid movement. J. Protozool. 10, 344357.CrossRefGoogle Scholar
Rinaldi, R. A., Opas, M. and Hrebenda, B. (1975) Contractility of glycerinated Amoeba proteus and Chaos chaos. J. Protozool. 22, 286292.CrossRefGoogle ScholarPubMed
Sale, W. S. and Satir, P. (1977) Direction of active sliding of microtubules in Tetrahymena cilia. Proc. natn. Acad. Sci. U.S.A. 74, 20452050.CrossRefGoogle ScholarPubMed
Satir, B. H., Garofalo, R. S., Gilligan, D. M. and Maihle, N. J. (1980) Possible functions of calmodulin in protozoa. Ann. N.Y. Acad. Sci. 356, 8391.CrossRefGoogle ScholarPubMed
Satir, P. (1982) Tubulin-based motility in Protozoa. In Progress in protozoology. Proceedings of the VI International Congress on Protozoology, part 1, pp. 131140.Google Scholar
Satir, P. (1985) Switching mechanisms in the control of ciliary motility. Modern Cell Biol. 4, 146.Google Scholar
*Satir, P. (1986) Dynein structure and function in protozoan cilia: current status. Ada protozool. In press.Google Scholar
Satir, P. and Avolio, J. (1986) Dynein as a microtubule-associated protein. Ann. N.Y. Acad. Sci. In press.CrossRefGoogle Scholar
Satir, P., Wais-Steider, J., Lebduska, S., Nasr, A. and Avolio, J. (1981) The mechanochemical cycle of the dynein arm. Cell Motil. 1, 303327.CrossRefGoogle ScholarPubMed
Schäfer-Danneel, S. (1967) Strukturelle und funktionelle Voraussetzungen fur die Bewegung von Amoeba proteus. Z. Zellforsch. 78, 441462.CrossRefGoogle ScholarPubMed
Seamon, K. B. and Kretsinger, R. H. (1983) Calcium modulated proteins. In Metal Ions in Biology (Edited by Spiro, T. G.), Vol VI. Academic Press, New York.Google Scholar
Seravin, L. N. (1966) Amoeboid locomotion. I. Arrest and resumption of the amoeboid locomotion under some experimental conditions. Zool. Zhurn. 45, 334341.Google Scholar
Simard-Duquesne, N. and Couillard, P. (1962) Amoeboid movement. I. Reactivation of glycerinated models of Amoeba proteus with adenosinetriphosphate. Expl Cell Res. 28, 8591.CrossRefGoogle Scholar
*Stockem, W. and Hoffmann, H. U. (1986) Microfilament organization and function in Amoebaproteus. Actaproto-zool. In press.Google Scholar
Stockem, W., Hoffmann, H. U. and Gawlitta, W. (1982) Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus. Cell Tiss. Res. 221, 505519.CrossRefGoogle ScholarPubMed
Stockem, W., Hoffmann, H. U. and Gruber, B. (1983a) Dynamics of the cytoskeleton in Amoeba proteus. I. Redistribution of microinjected fluorescein-labeled actin during locomotion, immobilization and phagocytosis. Cell Tiss. Res. 232, 7996.Google ScholarPubMed
Stockehm, W., Naib-Majani, W., Wohlfarth-Bottermann, K. E., Osborn, M. and Weber, K. (1983b) Pinocytosis and locomotion of amoebae. XIX. Immunocytochemical demonstration of actin and myosin in Amoeba proteus. Eur. J. Cell Biol. 29, 171178.Google Scholar
Sussman, D. J., Lai, E. Y. and Fulton, C. (1984a) Rapid disappearance of translatable actin mRNA during cell differentiation in Naegleria. J. biol. Chem. 259, 73557360.CrossRefGoogle ScholarPubMed
Sussman, D. J., Sellers, J. R., Flicker, P., Lai, E. Y., Cannon, L. E., Szent-Gyorgyi, A. G. and Fulton, C. (1984b) Actin of Naegleria gruberi. Absence of Nī -methylhistidine. J. biol. Chem. 259, 73497354.CrossRefGoogle Scholar
Taylor, D. L. and Condeelis, J. S. (1979) Cytoplasmic structure and contractility in amoeboid cells. Int. Rev. Cytol. 56, 57144.CrossRefGoogle ScholarPubMed
Taylor, D. L. and Fechheimer, M. (1982) Cytoplasmic structure and contractility: the solation—contraction coupling hypothesis. Phil. Trans. R. Soc. bond. B299, 185197.Google Scholar
Taylor, D. L., Hellewell, S. B., Virgin, H. W. and Heiple, J. (1979) The solation-contraction coupling hypothesis of cell movement. In Cell Motility: Molecules and Organization (Edited by Hatano, S., Ishikawa, H. and Sato, H.), pp. 363367University of Tokyo Press, Tokyo.Google Scholar
Taylor, D. L., Wang, Y. L. and Heiple, J. (1980) The contractile basis of amoeboid movement. VII. The distribution of fluorescently labeled actin in living amoebas. J. Cell Biol. 86, 590598.CrossRefGoogle Scholar
Tilney, L. G. and Porter, K. R. (1965) Studies on the microtubules in Heliozoa. I. Fine structure of Actino-sphaerium with particular reference to axial rod structure. Protoplasma 60, 317344.CrossRefGoogle ScholarPubMed
Travis, J. L. and Allen, R. D. (1981) Studies on the motility of the foraminifera. I. Ultrastructure of the reticulopodial network of Allogromia laticollaris. J. Cell Biol. 90, 211221.CrossRefGoogle ScholarPubMed
Travis, J. L., Kenealy, J. F. X. and Allen, R. D. (1983) Studies on the motility of the foraminifera. II. The dynamic microtubular cytoskeleton of the reticulopodial network of Allogromia laticollaris. J. Cell Biol. 97, 16681676.CrossRefGoogle ScholarPubMed
Tsukita, S., Ugukura, J. and Tshikana, H. (1983) ATP-dependent structural changes of the outer dynein arm in Tetrahymena cilia: A freeze-etch replica study. J. Cell Biol. 96, 14801485.CrossRefGoogle Scholar
Wallace, R. W., Tallant, E. A., Dockter, M. E. and Cheung, W. Y. (1982) Calcium binding domains of calmodulin: sequence of fill as determined with terbium luminescence. J. biol. Chem. 257, 18451854.CrossRefGoogle ScholarPubMed
Warner, F. D. and Mitchell, D. R. (1980) Dynein: The mechanochemical coupling adenosine triphosphatase of microtubule-based sliding filament mechanisms. Int. Rev. Cytol. 66, 143.CrossRefGoogle ScholarPubMed
Wehland, J., Weber, K., Gawlitta, W. and Stockem, W. (1979) Effects of the actin-binding protein DNAase I on cytoplasmic streaming and ultrastructure of Amoeba proteus. An attempt to explain amoeboid movement. Cell Tiss. Res. 199, 353372.CrossRefGoogle ScholarPubMed
Witman, G. B., Johnson, K. A., Pfister, K. K. and Wall, J. S. (1983) Fine structure and molecular weight of the outer arms of dyneins of Chlamydomonas. J. Submicr. Cytol. 15, 193197.Google Scholar