Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-14T00:57:07.787Z Has data issue: false hasContentIssue false

Protein Synthesis in the Male Accessory Reproductive Glands of Spodoptera litura (Noctuidae: Lepidoptera)

Published online by Cambridge University Press:  19 September 2011

R. Sridevi
Affiliation:
School of Life Sciences, University of Hyderabad, Hyderabad–500 134, India
Aparna Ray
Affiliation:
School of Life Sciences, University of Hyderabad, Hyderabad–500 134, India
Get access

Abstract

The male accessory reproductive glands (ARGs) of the tobacco caterpillar, Spodoptera litura begin development on 6th day of the pupal stage. The synthetic activity of the gland begins from the eighth day pupal stage as shown by 3H-leucine incorporation studies. There is a significant increase (2.4-fold) in the specific activity of 3H-leucine incorporation into TCA precipitable proteins in 10 hr old males when compared to newly emerged males (0 hr), and this synthesis is partially blocked (60%) by cycloheximide (5μg/insect) treatment.

Résumé

Les glandes accessoires de réproduction (ARG) du Spodoptera litura commencent le développement en etape de milieu-pupille et les activités synthétiques depuis le huitième jour d'étape pupille comme montré pavles études incorporés de 3H-leucine. Le taux du synthese proteine augmente d'une manière significative dans les mâles quisont émergés nouvellement et le synthèse est blocké par le traîtment cycloheximide.

Type
Research Article
Copyright
Copyright © ICIPE 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, P. S. (1984) The functional morphology and biochemistry of insect male accessory glands and their secretion. A. Rev. Ent. 29, 233255.CrossRefGoogle Scholar
Etman, A. A. M. and Hooper, G. H. S. (1979) Developmental and reproductive biology of Spodoptera litura (Lepidoptera: Noctuidae). J. Aust. ent. Soc. 18, 363372.CrossRefGoogle Scholar
Gillott, C. and Friedel, T. (1976) Development of the accessory reproductive glands and its control by the corpus allatum in adult male Melanoplus sanguinipes. J. Insect Physiol. 22, 365372.CrossRefGoogle Scholar
Happ, G. M. (1984) Structure and development of male accessory glands in insects. In Insect Ultrastructure (Edited by King, R. C. and Akai, H.), vol. 2, pp. 365396. Plenum Press, New York.CrossRefGoogle Scholar
Hinton, H. E. (1974) Accessory functions of seminal fluids. J. Med. Ent. 11, 1925.CrossRefGoogle Scholar
Kaulenas, M. S. (1976) Regional specialization for export protein synthesis in the male cricket accessory gland. J. Exp. Zool. 195, 8196.CrossRefGoogle Scholar
Kaulenas, M. S., Potswald, H. E., Burns, A. L. and Yenofsky, R. L. (1979) Development of structural and functional specialization for export protein synthesis by the accessory gland of the male cricket, Acheta domesticus L. (Orthoptera: Gryllidae). Int. J. Insect Morphol. Embryol. 8, 3349.CrossRefGoogle Scholar
Lai-Fook, J. (1982) Testicular development and spermatogenesis In Calpodes ethlius Stoll (Hesperiidae: Lepidoptera). Can. J. Zool. 60, 11611171.CrossRefGoogle Scholar
Leopold, R. A. (1976) The role of male accessory glands in insect reproduction. A. Rev. Ent. 21, 199221.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265275.CrossRefGoogle ScholarPubMed
Mann, T. (1984) Spermatophores in Zoophysiology (Edited by Heinrich, B., Johanson, K., Langer, H., Neuweiler, G. and Randall, D. J.), vol. 15, pp. 89204.CrossRefGoogle Scholar
Nagarkatti, S. and Prakash, S. (1974) Rearing Heliothis armigera on an artificial diet. CIBC. Tech. Bull. 17, 169173.Google Scholar
Navon, A., Nesbitt, J., Henzel, W., Mulligan, K., Mullen, J. A., Sugumaran, M. and Lipke, H. (1983) The effect of D-isoascorbic acid on spermatophore composition in Spodoptera littoralis. Insect Biochem. 13, 247250.CrossRefGoogle Scholar
Odhiambo, T. R. (1969a) The architecture of the accessory reproductive glands of the male desert locust. I. Types of glands and their secretions. Tissue Cell 1, 155182.CrossRefGoogle ScholarPubMed
Odhiambo, T. R. (1969b) The architecture of the accessory reproductive glands of the male desert locust. IV. Fine structure of the glandular epithelium. Phil. Trans. R. Soc. London Ser. B. 256, 85114.Google Scholar
Szollosi, A. and Landureau, J. C. (1977) Imaginal cell differentiation in the spermiduct of Samia cynthia (Lepidoptera). Responses in vitro to ecdysone and ecdysterone. Biol. Cell. 28, 2336.Google Scholar
Szopa, T. M. and Happ, G. M. (1982) Cytodifferentiation of the accessory glands of Tenebrie molitor. IX. Differentiation of the spermathecal accessory gland in vitro. Cell Tissue Res. 222, 269281.Google Scholar
Szopa, T. M., Lenoir Rousseaux, J. J., Yunker, C. and Happ, G. M. (1985) Ecdysteroids stimulate mitoses in accessory glands of beetle pupae. Dev. Biol. 197, 325336.CrossRefGoogle Scholar