Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-14T07:43:17.497Z Has data issue: false hasContentIssue false

Pill-millipedes (Arthrosphaera: Sphaerotheriida) of the Western Ghats: a future source of antioxidants?

Published online by Cambridge University Press:  27 July 2015

Cheviri Nair Ambarish
Affiliation:
Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
Kandikere Ramaiah Sridhar*
Affiliation:
Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
Get access

Abstract

Along with plant sources, arthropods (such as millipedes) are also known for their antioxidant activities that can help combat human ailments. Therefore, methanolic extracts of males and females of two endemic giant pill-millipedes of the Western Ghats (Arthrosphaera fumosa Pocock and Arthrosphaera magna Attems) were evaluated for antioxidant potential. The bioactive principles and activities assessed were total phenolics, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl or DPPH radical scavenging, ferrous ion chelation, reducing power and hydrogen peroxidase scavenging. Significant differences were shown between the two species, the sexes and the sexes within millipede species in total antioxidant activity, DPPH radical scavenging and ferrous ion chelation. Total phenolics and EC50 of DPPH radical scavenging activity differed significantly only between species and the sexes. This study clearly demonstrated that the antioxidant capacity of the methanolic extract of Arthrosphaera spp. is comparable to the ascorbic acid standard and possesses potential scavenging ability against reactive oxygen species generated during oxidative stress.

Type
Research Papers
Copyright
Copyright © ICIPE 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alothman, M., Bhat, R. and Karim, A. A. (2009) Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Science and Technology 20, 201212.CrossRefGoogle Scholar
Anderson, D. (1996) Antioxidant defences against reactive oxygen species causing genetic and other damage. Mutation Research 350, 103108. doi:10.1016/0027-5107(95)00096-8.CrossRefGoogle ScholarPubMed
Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995) Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology 28, 2530.CrossRefGoogle Scholar
Chang, S.-T., Wu, J.-H., Wang, S.-Y., Kang, P.-L., Yang, N.-S. and Shyur, L.-F. (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. Journal of Agricultural and Food Chemistry 49, 34203424. doi:10.1021/jf0100907 .CrossRefGoogle ScholarPubMed
Decker, E. A. (1997) Phenolics: prooxidants or antioxidants? Nutrition Reviews 55, 396407.CrossRefGoogle ScholarPubMed
Dinis, T. C., Madeira, V. M. and Almeida, L. M. (1994) Action of phenolic derivatives (acetoaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics 315, 161169.CrossRefGoogle Scholar
Duh, P.-D., Tu, Y.-Y. and Yen, G.-C. (1999) Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). LWT – Food Science and Technology 32, 269277.CrossRefGoogle Scholar
Fang, Y. Z., Yang, S. and Wu, G. (2002) Free radicals, antioxidants, and nutrition. Nutrition 18, 872879.CrossRefGoogle ScholarPubMed
Gordon, M. H. (1990) The mechanism of antioxidant action in vitro , pp. 118. In Food Antioxidants (edited by Hudson, B. J. F.). Elsevier Applied Food Science Series. Elsevier, London, UK.Google Scholar
Halliwell, B. and Gutteridge, J. M. C. (2007) Free Radicals in Biology and Medicine 4th edn. Oxford University Press, Oxford, UK. 704 pp.Google Scholar
Halliwell, B., Murcia, M. A., Chirico, S. and Aruoma, O. I. (1995) Free radicals and antioxidants in food and in vivo: what they do and how they work. Critical Reviews in Food Science and Nutrition 35, 720.CrossRefGoogle Scholar
Kaur, C. and Kapoor, H. C. (2002) Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science and Technology 37, 153161. doi:10.1046/j.1365-2621.2002.00552.x .CrossRefGoogle Scholar
Komali, A. S., Zheng, Z. and Shetty, K. (1999) A mathematical model for the growth kinetics and synthesis of phenolics in oregano (Origanum vulgare) shoot cultures inoculated with Pseudomonas species. Process Biochemistry 35, 227235.CrossRefGoogle Scholar
Lee, Y.-L., Yen, M.-T. and Mau, J.-L. (2007) Antioxidant properties of various extracts from Hypsizygus marmoreus . Food Chemistry 104, 19.CrossRefGoogle Scholar
Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J., Zhu, F., Qu, M. and Yang, Q. (2012) Antioxidant activity and phenolic compounds of Holotrichia parallela Motschulsky extracts. Food Chemistry 134, 18851891. doi:10.1016/j.foodchem.2012.03.091 .CrossRefGoogle ScholarPubMed
Mau, J.-L., Lin, H.-C. and Chen, C.-C. (2002) Antioxidant properties of several medicinal mushrooms. Journal of Agricultural and Food Chemistry 50, 60726077.CrossRefGoogle ScholarPubMed
Medved, I., Brown, M. J., Bjorksten, A. R., Murphy, K. T., Petersen, A. C., Sostaric, S., Gong, X. and McKenna, M. J. (2004) N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. Journal of Applied Physiology 97, 14771485.CrossRefGoogle ScholarPubMed
Miliauskas, G., Venskutonis, P. R. and Van Beek, T. A. (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry 85, 231237. doi:10.1016/j.foodchem.2003.05.007 .CrossRefGoogle Scholar
Oktay, M., Gülçin, İ. and Küfrevioglu, Ö. İ. (2003) Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT – Food Science and Technology 36, 263271.CrossRefGoogle Scholar
Oyaizu, M. (1986) Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics 44, 307315.CrossRefGoogle Scholar
Prieto, P., Pineda, M. and Aguilar, M. (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry 269, 337341.CrossRefGoogle Scholar
Raghavan, S., Kristinsson, H. G. and Leeuwenburgh, C. (2008) Radical scavenging and reducing ability of tilapia (Oreochromis niloticus) protein hydrolysates. Journal of Agricultural and Food Chemistry 56, 1035910367. doi: 10.1021/jf8017194 .CrossRefGoogle ScholarPubMed
Randhir, R., Lin, Y.-T. and Shetty, K. (2004) Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry 39, 637646. doi:10.1016/S0032-9592(03)00197-3 .CrossRefGoogle Scholar
Rosset, J., Bärlocher, F. and Oertli, J. J. (1982) Decomposition of conifer needles and deciduous leaves in two Black Forest and two Swiss Jura streams. Internationale Revue der gesamten Hydrobiologie 67, 695711.Google Scholar
Ruch, R. J., Cheng, S. J. and Klaunig, J. E. (1989.) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10, 10031008.CrossRefGoogle ScholarPubMed
Sagisaka, A., Miyanoshita, A., Ishibashi, J. and Yamakawa, M. (2001) Purification, characterization and gene expression of a glycine and proline-rich antibacterial protein family from larvae of a beetle, Allomyrina dichotoma . Insect Molecular Biology 10, 293302.CrossRefGoogle ScholarPubMed
SigmaPlot 11 (2008) SigmaPlot® 11 User's Guide, Part 1+ Part 2. Systat Software, Inc, San Jose, California.Google Scholar
Srivastava, A., Harish, S. R. and Shivanandappa, T. (2006) Antioxidant activity of the roots of Decalepis hamiltonii (Wight & Arn.). LWT – Food Science and Technology 39, 10591065. doi:10.1016/j.lwt.2005.07.005 .CrossRefGoogle Scholar
Suh, H.-J., Kim, S.-R., Hwang, J.-S., Kim, M. J. and Kim, I. (2011 a) Antioxidant activity of aqueous methanol extracts from the lucanid beetle, Serrognathus platymelus castanicolor Motschulsky (Coleoptera: Lucanidae). Journal of Asia-Pacific Entomology 14, 9598.CrossRefGoogle Scholar
Suh, H. J., Kim, S.-R., Lee, K. S., Park, S. and Kang, S. C. (2010) Antioxidant activity of various solvent extracts from Allomyrina dichotoma (Arthropoda: Insecta) larvae. Journal of Photochemistry and Photobiology B: Biology 99, 6773. doi: 10.1016/j.jphotobiol.2010.02.005 .CrossRefGoogle ScholarPubMed
Suh, H.-J., Lee, K.-S., Kim, S.-R., Shin, M.-H., Park, S. G. and Park, S. (2011 b) Determination of singlet oxygen quenching and protection of biological systems by various extracts from seed of Rumex crispus L. Journal of Photochemistry and Photobiology B: Biology 102, 102107.CrossRefGoogle ScholarPubMed
Tanaka, M., Kuei, C. W., Nagashima, Y. and Taguchi, T. (1988) Application of antioxidative Maillard reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkaishi 54, 14091414.CrossRefGoogle Scholar
Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. and Van Cappellen, P. (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry 15, 785790.CrossRefGoogle Scholar
Virdi, J., Sivakami, S., Shahani, S., Suthar, A. C., Banavalikar, M. M. and Biyani, M. K. (2003) Antihyperglycemic effects of three extracts from Momordica charantia . Journal of Ethnopharmacology 88, 107–111.CrossRefGoogle ScholarPubMed
Williams, G. M. and Iatropoulos, M. J. (1997) Antiocarcinogenic effects of synthetic phenolic antioxidants, pp. 341350. In Oxidants, Antioxidants and Free Radicals (edited by Baskin, S. I. and Salem, H.). Taylor and Francis, New York, USA.Google Scholar
Yen, G.-C. and Wu, J.-Y. (1999) Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae . Food Chemistry 65, 375379. doi:10.1016/S0308-8146(98)00239-8.CrossRefGoogle Scholar
Young, I. S. and Woodside, J. V. (2001) Antioxidants in health and disease. Journal of Clinical Pathology 54, 176186.CrossRefGoogle ScholarPubMed