Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T10:41:06.359Z Has data issue: false hasContentIssue false

Improving olive fruit fly Bactrocera oleae (Diptera: Tephritidae) adult and larval artificial diets, microflora associated with the fly and evaluation of a transgenic olive fruit fly strain

Published online by Cambridge University Press:  13 October 2014

Polychronis Rempoulakis*
Affiliation:
Laboratory of Applied Entomology, Department of Biology, University of Crete, PO Box 2208, Heraklion, Crete, Greece
Ioannis Dimou
Affiliation:
Laboratory of Applied Entomology, Department of Biology, University of Crete, PO Box 2208, Heraklion, Crete, Greece
Antonios Chrysargyris
Affiliation:
Laboratory of Applied Entomology, Department of Biology, University of Crete, PO Box 2208, Heraklion, Crete, Greece
Aris P. Economopoulos
Affiliation:
Laboratory of Applied Entomology, Department of Biology, University of Crete, PO Box 2208, Heraklion, Crete, Greece
Get access

Abstract

Research on the olive fruit fly Bactrocera oleae (Rossi) – rearing simplification, insect microflora and transgenic strain evaluation – yielded several findings: (1) incorporation of antibiotics in the adult diet is evidently not needed; (2) colonization appears to be easier when wild adults are collected from the field instead of using mature larvae emerging from field-collected infested olives; (3) a combination of standard solid starter with liquid (no cellulose powder) finisher impregnated in synthetic sponge larval diets was more promising compared with all-liquid diets; (4) molecular analysis revealed extensive differences in bacterial species associated with the fly between laboratory flies and strains from different olive varieties, as well as between strains originating from different seasons of the year; (5) when an enhanced green fluorescent protein transgenic strain was compared with the standard long mass-reared strain, it proved significantly inferior according to all quality control tests applied, i.e. egg production, egg hatch, larval-stage duration, pupal recovery, pupal weight, adult emergence and adult survival. The aforementioned findings are discussed in the context of mass rearing and quality requirements for more successful implementation of the sterile insect technique against this pest.

Type
Research Papers
Copyright
Copyright © ICIPE 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behar, A., Yuval, B. and Jurkevitch, E. (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Molecular Ecology 14, 26372643.CrossRefGoogle ScholarPubMed
Ben-Yosef, M., Jurkevitch, E. and Yuval, B. (2008) Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratitis capitata. Physiological Entomology 33, 145154.CrossRefGoogle Scholar
Caillaud, C. M. and Rahbe, Y. (1999) Aposymbiosis in a cereal aphid: reproductive failure and influence on plant utilization. Ecological Entomology 24, 111114.CrossRefGoogle Scholar
Capuzzo, C., Firrao, G., Mazzon, L., Squartini, A. and Girolami, V. (2005) “Candidatus Erwinia dacicola”, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). International Journal of Systematic and Evolutionary Microbiology 55, 16411647.CrossRefGoogle ScholarPubMed
Chrysargyris, A., Bourtzis, K. and Economopoulos, A. P. (2007) Identification of microflora in different strains of the olive fruit fly, Bactrocera (Dacus) oleae (Rossi) (Diptera, Tephritidae), pp. 135136. Proceedings of the 12th Entomological Conference organized by the Hellenic Entomological Society, 13-16 November 2007, Larnaca, Cyprus (extended summary).Google Scholar
Dale, C. and Welburn, S. C. (2001) The endosymbionts of tsetse flies: manipulating host–parasite interactions. International Journal for Parasitology 31, 628631.CrossRefGoogle ScholarPubMed
Dillon, R. J. and Charnley, A. K. (1986) Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust, Schistocerca gregaria: evidence for an antifungal toxin. Journal of Invertebrate Pathology 47, 350360.CrossRefGoogle Scholar
Dillon, R. J., Vennard, C. T., Buckling, A. and Charnley, A. K. (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecology Letters 8, 12911298.CrossRefGoogle Scholar
Dimou, I., Rempoulakis, P. and Economopoulos, A. P. (2010) Olive fruit fly [Bactrocera (Dacus) oleae (Rossi) (Diptera: Tephritidae)] adult rearing diet without antibiotic. Journal of Applied Entomology 134, 7279.CrossRefGoogle Scholar
Fytizas, E. and Tzanakakis, M. E. (1966) Some effects of streptomycin, when added to the adult food, on the adults of Dacus oleae (Diptera: Tephritidae) and their progeny. Annals of the Entomological Society of America 59, 269273.CrossRefGoogle Scholar
Gilliam, M. (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiology Letters 155, 110.CrossRefGoogle Scholar
Grenier, A. M., Nardon, C. and Nardon, P. (1994) The role of symbiotes in flight activity of Sitophilus weevils. Entomologia Experimentalis et Applicata 70, 201208.CrossRefGoogle Scholar
Hagen, K. S. (1966) Dependence of the olive fly Dacus oleae larvae on symbiosis with Pseudomonas savastanoi for the utilization of olive. Nature (London) 209, 423424.CrossRefGoogle Scholar
Hagen, K. S., Santas, L. and Tsekouras, A. (1963) A technique of culturing the olive fly, Dacus oleae Gmel., on synthetic media under xenic conditions, pp. 333356. In Radiation and Radioisotopes Applied to Insects of Agricultural Importance. Symposium Proceedings, 22–26 April 1963, Athens, Greece. STI/PUB/74. International Atomic Energy Agency, Vienna.Google Scholar
IAEA (2003) Trapping Guidelines for Area-wide Fruit Fly Programmes. IAEA/FAO-TG/FFP. International Atomic Energy Agency, Vienna, Austria. 47 pp.Google Scholar
Konstantopoulou, M. A., Economopoulos, A. P. and Manoukas, A. G. (1996) Olive fruit fly (Diptera: Tephritidae) ADH allele selected under artificial rearing produced bigger flies than other ADH alleles. Journal of Economic Entomology 89, 13871391.CrossRefGoogle Scholar
Konstantopoulou, M. A., Economopoulos, A. P. and Raptopoulos, D. G. (1999) Artificial rearing antimicrobials as selecting factors of Adh alleles in the olive fruit fly, Bactrocera (Dacus) oleae (Gmel.) (Diptera: Tephritidae). Journal of Economic Entomology 92, 563568.CrossRefGoogle Scholar
Koukidou, M., Klinakis, A., Reboulakis, C., Zagoraiou, L., Tavernarakis, N., Livadaras, I., Economopoulos, A. P. and Savakis, C. (2006) Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. Insect Molecular Biology 15, 95103.CrossRefGoogle ScholarPubMed
Mittler, T. E. and Tsitsipis, J. A. (1973) Economical rearing of larvae of the olive fruit fly, Dacus oleae, on a liquid diet offered on cotton towelling. Entomologia Experimentalis et Applicata 16, 292293.CrossRefGoogle Scholar
Montllor, C. B., Maxmen, A. and Purcell, A. H. (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology 27, 189195.CrossRefGoogle Scholar
Petri, L. (1910) Untersuchung uber die Darmbakterien der Olivenfliege. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 26, 357367.Google Scholar
SPSS (1999) SPSS User's Manual. SPSS Inc., Chicago, USA.Google Scholar
Treves, D. S. and Martin, M. M. (1994) Cellulose digestion in primitive hexapods: effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat, Thermobia domestica (Zygentoma, Lepismatidae). Journal of Chemical Ecology 20, 20032020.CrossRefGoogle ScholarPubMed
Tsiropoulos, G. J. (1983) Microflora associated with wild and laboratory reared adult olive fruit flies, Dacus oleae. Zeitschrift für Angewandte Entomologie 96, 337340.CrossRefGoogle Scholar
Tsiropoulos, G. J. (1992) Feeding and dietary requirements of the tephritid fruit flies, pp. 93118. In Advances in Insect Rearing for Research and Pest Management (edited by Anderson, T. E. and Leppla, N. C.). Westrum Press Inc., Oxford, UK.Google Scholar
Tsitsipis, J. A. (1975) Mass rearing of olive fruit fly, Dacus oleae (Gmelin), at ‘Democritos’, pp. 93100. Panel Proceedings Series (IAEA): Panel and Research Co-ordination Meeting on the Sterile-Male Technique for Control of Fruit Flies, Vienna (Austria), 12 November 1973/FAO, Vienna (Austria). Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture.Google Scholar
Tsitsipis, J. A. (1977) Development of a caging and egging system for mass rearing the olive fruit fly, Dacus oleae (Gmel.) (Diptera, Tephritidae). Zeitschrift für Angewandte Entomologie 83, 96105.CrossRefGoogle Scholar
Tsitsipis, J. A. and Kontos, A. (1983) Improved solid adult diet for the olive fruit fly Dacus oleae. Entomologia Hellenica 1, 2429.CrossRefGoogle Scholar
Tzanakakis, M. E. (1971) Rearing methods for the olive fruit fly Dacus oleae (Gmelin). Annals of the School of Agriculture and Forestry, University of Thessaloniki 14, 309317.Google Scholar
Vanderzant, E. S. (1974) Development, significance and application of artificial diets for insects. Annual Review of Entomology 19, 139160.CrossRefGoogle Scholar
Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. (1991) 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173, 697703.CrossRefGoogle ScholarPubMed
Wilkinson, T. L. and Ishikawa, H. (2000) Injection of essential amino acids substitutes for bacterial supply in aposymbiotic pea aphids (Acyrthosiphon pisum). Entomologia Experimentalis et Applicata 94, 8591.CrossRefGoogle Scholar
Yamvrias, C., Panagopoulos, C. G. and Psalidas, P. G. (1970) Preliminary study of the internal bacterial flora of the olive fruit fly. Annales de l'Institut Phytopathologie Benaki, N.S. 9, 201206.Google Scholar
Zchori-Fein, E., Borad, C. and Harari, A. R. (2006) Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. Physiological Entomology 31, 164169.CrossRefGoogle Scholar
Zurek, L. and Keddie, B. A. (1996) Contribution of the colon and colonic bacterial flora to metabolism and development of the American cockroach Periplaneta americana L. Journal of Insect Physiology 42, 743748.CrossRefGoogle Scholar