Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-19T10:36:39.215Z Has data issue: false hasContentIssue false

Herbivores and toxic plants: Evolution of a menu of options for processing allelochemicals

Published online by Cambridge University Press:  19 September 2011

Murray S. Blum
Affiliation:
Department of Entomology, University of Georgia, Athens, Georgia 30602
Douglas W. Whitman
Affiliation:
Department of Entomology, University of Georgia, Athens, Georgia 30602
Ray F. Severson
Affiliation:
USDA-ARS, Russell Research Center, Athens, Georgia 30613, USA
Richard F. Arrendale
Affiliation:
USDA-ARS, Russell Research Center, Athens, Georgia 30613, USA
Get access

Abstract

Insects have evolved a potpourri of mechanisms for manipulating the allelochemicals that fortify their preferred host plants. A concatenation of physiological and biochemical events frequently follows the ingestion of a toxic natural product and can eventuate in a variety of fates for the compound. A particular allelochemical may be absorbed, metabolized, and sequestered, whereas the fates of concomitant natural products may be very different. Some compounds may be directly excreted in the faeces and their concentration will thus mirror that in the plant. In other cases, selective absorption and sequestration combine to biomagnify minor constituents so that the concentration of these sequestered compounds in insect tissues diners drastically from their concentrations in the host plants.

The acridid Romalea guttata is utilized in this paper as a paradigmatic insect which eclectically processes ingested allelochemicals from a wide range of host plants. This generalist herbivore is eminently suitable as a model because it feeds on plants containing a veritable pharmacopoeia of toxic compounds. The proven sequestrative potential of its defensive glands further qualifies R. guttata as an excellent candidate for determining the fates of toxic phytochemicals. An analysis of this insect's processing strategies for the compounds ingested after feeding on catnip (Nepeta cataria) reveals that for R. guttata variety is the spice of herbivorous life. The results of this investigation persuasively demonstrate that each insect species—and the phytochemical mixture that it ingests—must be regarded as a unique evolutionary case that constitutes a distinctively idiosyncratic phenomenon.

Résumé

Les insectes ont développé un potpourri de mécanismes pour manipuler les composés qui fortifient leurs plantes préférées. Un enchaînement d'évenements physiologiques et biochimiques découle fréquemment de l'ingestion d'un produit naturel et toxique et peut donner au composé des fortunes diverses. Un composé particulier peut être absorbé, transformé par métabolisme, et isolé, alors que les fortunes des produits naturels comcomitants peuvent être très différents. Certains composés peuvent être excrétés directement dans les fèces et leur concentration correspondra à celui de la plante. Dans les autres cas, l'absorption et l'isolement sélectifs se combinent pour augmenter biologiquement les constituants mineurs de sorte que la concentration des composés isolés dans les tissues de l'insecte différe radicalement de la concentration qui existe dans les plantes préférées. Dans cet article on examine la sauterelle Romalea guttata comme modèle qui utilise éclectiquement les composés ingérés d'un grand choix de plantes préférées.

Type
Symposium II: Biotypes, Polymorphism and Co-evolution in Tropical Insects
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blum, M. S. (1983) Detoxication, deactivation, and utilization of plant compounds by insects. In Plant Resistance to Insects (Edited by Hedin, P. A.), pp. 265275. ACS Symposium Series, No. 208, American Chemical Society, Washington.CrossRefGoogle Scholar
Blum, M. S., Rivier, L. and Plowman, T. (1981) Fate of cocaine in the lymantriid Eloria noyesi, a predator of Erythroxylum coca. Phytochem. 20, 24992500.CrossRefGoogle Scholar
Brower, L. P., Seiber, J. N., Nelson, C. J., Lynch, S. P., Hoggard, M. P. and Cohen, J. A. (1984) Plant-determined variation in cardenolide content and thin-layer chro-matography profiles of monarch butterflies, Danaus plexippus reared on milkweed plants in California. 3: Asclepias californica. J. Chem. Ecol. 10, 18231857.Google Scholar
Duffey, S. S. (1980) Sequestration of plant natural products by insects. A. Rev. Ent. 25, 447477.CrossRefGoogle Scholar
Duffey, S. S. and Blum, M. S. (1977) Phenol and guaiacol: Biosynthesis, detoxication, and function in a polydesmid millipede, Oxidus gracilis. Insect Biochem. 7, 5765.CrossRefGoogle Scholar
Duffey, S. S. and Scudder, G. G. E. (1974) Cardiac glycosides In Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae)—I. The uptake and distribution of natural cardenolides in the body. Can. J. Zool. 52, 283290.CrossRefGoogle Scholar
Eisner, T. (1964) Catnip: Its raison d'être. Science 146, 13181320.CrossRefGoogle ScholarPubMed
Eisner, T., Hendry, L. B., Peakall, D. B. and Meinwald, J. (1971) 2, 5-Dichlorophenol (from ingested herbicide?) in defensive secretion of grasshopper. Science 172, 277278.CrossRefGoogle ScholarPubMed
Fraenkel, G. S. (1959) The raison d'étre of secondary plant substances. Science 129, 14661470.CrossRefGoogle ScholarPubMed
Jones, C. G., Hess, T. A., Whitman, D. W., Silk, P. J. and Blum, M. S. (1986) Idiosyncratic variation in chemical defenses among individual generalist grasshoppers. J. Chem. Ecol. 12, 749761.CrossRefGoogle ScholarPubMed
Jones, C. G., Hess, T. A., Whitman, D. W., Silk, P. J. and Blum, M. S. (1987) Effects of diet breadth on autogenous chemical defense of a generalist grasshopper. J. Chem. Ecol. 13, 283297.CrossRefGoogle ScholarPubMed
Nishio, S. (1980) The fates and adaptive significance of cardenolides sequestered by larvae of Danaus plexippus (L.) and Cycnia inopinatus (Hy. Edwards). Ph.D. thesis, University of Georgia.Google Scholar
Regnier, F. E., Eisenbraun, E. J. and Waller, G. R. (1967) Nepetalactone and epinepetalactone from Nepeta cataria L. Phytochem. 6, 12711280.CrossRefGoogle Scholar
Rothschild, M. (1972) Secondary plant substances and warning colouration in insects. In Insect/Plant Relationships (Edited by van Emden, H.), pp. 5983. Blackwells, Oxford and London.Google Scholar
Rothschild, M., Aplin, R. T., Cockrum, P. A., Edgar, J. A., Fairweather, P. and Lees, R. (1979) Pyrrolizidine alkaloids in arctiid moths (Lep.) with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae. Biol. J. Linn. Soc. 12, 305326.CrossRefGoogle Scholar
Rothschild, M., von Euw, J., Reichstein, T., Smith, D. A. S. and Pierre, J. (1975) Cardenolide storage In Danaus chrysippus (L.) with additional notes on D. plexippus (L.). Proc. Roy. Soc. Lond. (B) 190, 131.Google Scholar
Scudder, G. G. E., Moore, L. V. and Isman, M. B. (1986) Sequestration of cardenolides In Oncopeltus fasciatus: Morphological and physiological adaptations. J. Chem. Ecol. 12, 11711187.CrossRefGoogle Scholar
Seiber, J. N., Tuskes, P. M., Brower, L. P. and Roeske, C. N. (1980) Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L.). J. Chem. Ecol. 6, 321339.CrossRefGoogle Scholar