Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T12:12:00.446Z Has data issue: false hasContentIssue false

Genetic polymorphisms in natural populations of tsetse fly, Glossina pallidipes Austen in Kenya

Published online by Cambridge University Press:  19 September 2011

A. Kence
Affiliation:
Department of Biology, Middle East Technical University, 06513, Ankara, Turkey
N. Darji
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
H. Mahamat
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

Genetic differentiations in natural populations of the tsetse fly, Glossina pallidipes Austen (Diptera: Giossinidae) collected from three ecologically distinct regions of Kenya, namely Lambwe Valley, Shimba Hills and Nguruman were analysed based on two enzymes, phosphoglucomutase (PGM) and phosphoglucose isomerase (GPI). The PGM gene frequencies of allele (a) of male and female flies from Lambwe Valley showed significant differences. A dendrogram of populations collected from different localities showed two clusters: one comprising Shimba Hills, Majimboni and Muhaka Forest and the other comprising Gendo, Homa Hills and Nguruman. This suggests mat different subpopulations of G. pallidipes have adapted to different habitats.

Résumé

Des différentiations génétiques chez des populations naturelles de Glossina pallidipes Austen (Diptera: Giossinidae) receuillies dans la vallée de Lambwe, à Shimba Hills et à Nguruman, Kenya ont été analysées en se basant sur deux enzymes, la phosphoglucomutase (PGM) et la phosphoglucose isomerase (PGI). La fréquence du gène PGM de l'allèle (a) des mouches mâles et femelles en provenance de la Vallée de Lambwe a montré des différences significatives. Un dendrograme obtenu par UPGMA des populations provenant de différentes localités a mis en évidence 2 clusters, l'un comprennant Shimba Hills, Majimboni, Muhaka Forest et le second comprennant Gendo, Homa Hills et Nguruman. Ce résultat suggère que différentes sous-populations de G. pallidipes se sont adaptées aux différentes habitats.

Type
Research Articles
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agatsuma, T. and Otieno, L. H. (1988) Isozyme studies on two field populations of Glossina pallidipes Austen (Diptera, Glossinidae) in Kenya. Insect Sci. Applic. 9, 527530.Google Scholar
Divall, G. B. (1984) Starch gel electrophoresis of proteins. In Methods in Moleculer Biology. 1. Proteins (Edited by Walker, J. M.). Humana Press Inc. US.Google Scholar
Gooding, R. H. (1984) Tsetse genetics: A review. Quaest. Ent. 20, 89128.Google Scholar
Gooding, R. H. (1992) Genetic variation in tsetse flies and implications for trypanosomosis. Parasitology Today 8, 9295.Google Scholar
Gooding, R. H., Mbise, S., Macha, P. and Rolseth, B. M. (1993) Genetic variation in a Tanzanian population of Glossina swynnertoni (Diptera: Glossinidae). J. Med. Entomol. 30, 489492.CrossRefGoogle Scholar
Gooding, R. H. and Moloo, K. S. (1994) Genetics of two colonies of Glossina pallidipes originating from allopatric populations in Kenya. Med. Vet. Entomol. 8, 133136.Google Scholar
Gooding, R. H. and Rolseth, B. M. (1992) Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). XIV. Map locations of the loci for phosphoglucomutase and glucose-6-phosphate isomerase. Genome 35, 699701.Google Scholar
Harris, H. and Hopkinson, D. A. (1976) Handbook of Enzyme Electrophoresis in Human Genetics. North-Holland, Amsterdam.Google Scholar
ICIPE (1989) Report of preparatory phase of the project on trypanosomosis control in the Kagera River Basin (Raf/87/132). Sixteenth Annual Report, 1988.Google Scholar
Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York. 521 pp.Google Scholar
Rajendram, G. F. (1991) Electrophoretic study of enzymes from Glossina fuscipes fuscipes Newstead population from Western Kenya. Can. Ent. 123, 295298.CrossRefGoogle Scholar
Rolseth, B. M. and Gooding, R. H. (1978) Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). I. Electrophoretic banding patterns of xanthine and aldehyde oxidase. Can. Ent. 110, 12331239.Google Scholar
Shaw, C. R. and Prasad, R. (1970) Starch gel electrophoresis—A compilation of recipes. Biochem. Genet. 4, 297320.Google Scholar
Sneath, P. H. A. and Sokal, R. R. (1973) Numerical Taxonomy: The Principles and Practice of Numerical Classification. W. H. Freeman and Company, San Francisco.Google Scholar
Turner, D. A. (1984) A preliminary assessment of some immediate and long-term effects of aerial spraying of endosulfan on Glossina pallidipes (Austen) in the Lambwe Valley, Kenya. Insect Sci. Applic. 5, 425429.Google Scholar
Van Etten, J. (1982a) Enzyme polymorphism in populations of the tsetse fly Glossina pallidipes in Kenya. Entomol. Exp. Appl. 31, 197201.Google Scholar
Van Etten, J. (1982b) Comparative studies on fat reserves. Feeding and metabolic strategies of flies from two allopatric populations of Glossina pallidipes Austen in Kenya. Acta Tropica 39, 157169.Google Scholar
Van Etten, J. (1982c) Comparative studies on the diurnal activity pattern in two field and laboratory populations of Glossina pallidipes. Entomol. Exp. Appl. 32, 3845.Google Scholar