Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-18T00:15:30.966Z Has data issue: false hasContentIssue false

Free amino acid concentrations in the male accessory glands during development of adult variegated grasshopper, Zonocerus variegatus L. (Orthoptera: Pyrgomorphidae)

Published online by Cambridge University Press:  19 September 2011

W. A. Muse
Affiliation:
Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
R. A. Balogun
Affiliation:
Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
Get access

Abstract

The free amino acids of the accessory glands of adult male variegated grasshopper, Zonocerus variegatus (Linnaeus) were investigated at five different ages after emergence of insects maintained oh cassava Manihot esculenta, Cranz using automatic amino acid analyser, Beckman 121 MB. Thirteen amino acid components were consistently detected from days 6 to 28: cystine, aspartic acid, serine, glutamic acid, proline, glycine, alanine, valine, tyrosine phenylalanine, histidine, lysine and arginine. Proline, alanine, glycine, glutamic acid and serine occurred in highest concentrations, comprising 14.27, 11.88, 11.09, 9.66 and 8.15 nmoles respectively throughout the 28-day experimental period. Total free amino acids fluctuated in the course of development of accessory gland with highest load at 28 days of age.

Résumé

Nous avons étudié les acides aminés purs des glandes accessoires de la sauterelle bariolée adulte et mâle, Zonocerus variegatus (Linnaeus) a cinq âges différents après l'émergence d'insectes nourris de manioc, Manihot esculenta, Cranz au moyen de l'analyseur automatique d'acides aminés, le Beckman 121 MB. Nous avons relevé, du premier au vingt-huitième jour, treize composants d'acides amines: la cystine, la sérine d'acide aspartique, la valine, la tyrosine phénylalanine, l'histidine, la lysine et l'arginine. Les plus fortes concentrations, entrestrées dans la proline, l'alanine, la glycine, l'acide glutamique et la sérine étaient, respectivement, de 14.27, 11.88, 11.09, 9.66 et 8.15 nmoles au cours des 28 jours de l'expérience. Le total des acides aminés a varié tout au long de la période du développement des glandes accessoires, le taux le plus éléve étant enrégistré à 28 jours.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balogun, R. A. (1974) A sex-specific ninhydrin-positive component detected in the accessory glands of adult male tsetse flies (Diptera, Glossinidae). Nigerian J. Eniomol. 1, 1316.Google Scholar
Baumann, H. (1974) Biological effects of paragonial substances, PS-1 and PS-2 in the females of Drosophilafunebris. J. Insect Physiol. 20, 23472362.CrossRefGoogle Scholar
Baumann, H., Wilson, K. J., Chen, P. S. and Humbel, R. E. (1975) The amino acid sequence of a peptide (PS-1) from Drosophila funebris. A paragonial peptide from males which reduces the receptivity of the female. European J. Biochem. 52, 521529.CrossRefGoogle ScholarPubMed
Chen, P. S. (1984) The functional morphology and biochemistry of insect male accessory glands and their secretions. Annu. Rev. Entomol. 29, 233255.CrossRefGoogle Scholar
Chen, P. S. and Buhler, R. (1970) Paragonia substance and other ninhydrin-positive components in the male and female adults of Drosophila melanogaster. J. Insect Physiol. 16, 615627.CrossRefGoogle Scholar
Chen, P. S. and Diem, C. (1961) A sex-specific ninhydrin-positive substance found in the paragonia of adult males of Drosophila melanogaster. J. Insect Physiol. 7, 289298.CrossRefGoogle Scholar
Chen, P. S. and Oechslin, A. (1976) Accumulation of glutamic -acid in the paragonial gland of Drosophila nigromelanica. J. insect Physiol. 22, 12371243.CrossRefGoogle Scholar
Fox, A.S. (1956) Chromatographic difference between male and female Drosophila melanogaster and role of X and Y chromosomes. Physiol. Zool. 19, 288298.CrossRefGoogle Scholar
Frank, E. and Happ, G. M. (1976) Spermatophore of the mealworm beetle. Immunochemical characteristics suggest affinities with accessory gland. J. Insect Physiol. 22, 891895.CrossRefGoogle Scholar
Gillot, C. and Friedel, T. (1977) Fecundity-enhancing and receptivity-inhibiting substances produced by male insects: A review. Adv. Invertebr. Rep. 1, 199217.Google Scholar
Happ, G. M. (1987) Accessory gland development in mealworm beetles. Molecular Entomology, pp. 433442. Allan R. Liss, Incorporation, New York, USA.Google Scholar
Leopold, R. A. (1976) The role of male accessory glands in insect reproduction. Annu. Rev. Entomol. 21, 199222.CrossRefGoogle Scholar
Levenbook, L. and Dinamarca, M. L. (1966) Free amino acids and related compounds during metamorphosis of the blowfly, Phormia regina. J. Insect Physiol. 12, 13431362.CrossRefGoogle Scholar
Novak, A. F., Blum, M. D., Taber, S., Agric. Research Service and Linzzo, J. A. (1960) Separation and determination of seminal plasma and sperm amino acids of the honey bee, Apis mellifera. Ann. Entomol. Soc. Am. 53, 841843.CrossRefGoogle Scholar