Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T17:56:04.564Z Has data issue: false hasContentIssue false

Ecology and integrated pest management

Published online by Cambridge University Press:  19 September 2011

J. C. Van Lenteren
Affiliation:
Department of Entomology, Wageningen Agricultural University, P. O. Box 8031, Wageningen, The Netherlands
W. A. Overholt
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
Get access

Abstract

The struggle to control populations of organisms that feed on agricultural crops, livestock, and directly on humans is as old as recorded history, and will continue into the perceivable future. Only 30 years ago, the availability of relatively cheap and highly effective synthetic organic pesticides was thought to be the ultimate solution to pest populations. However, our naïveté regarding the ability of pest populations to rapidly adapt to simplistic man-induced selection pressures has become increasingly apparent, as have the detrimental impacts of pesticides on the environment. The evolution of the integrated pest management paradigm can be traced to these concerns, and it is now accepted that sustainable solutions to the management of pest populations will only be borne out of an increased understanding of the functioning of ecosystems. Knowledge of the population dynamics, and underlying causes of density changes in pest populations, behavioural ecology, and population genetics of pests and natural enemies, are essential elements for designing appropriate biologically intensive strategies for pest management. Progress is being made, and several examples of innovative strategies and promising areas of research, are discussed. Future work must continue to be based on a solid foundation of ecological understanding, to avoid the pitfalls of simple opportunistic solutions.

Résumé

La bataille contre les populations d'organismes vivant aux dépens des cultures, du bétail et directement des humains, est aussi vieille que l'histoire écrite, et se poursuivra encore dans un avenir prévisible. Il y a de cela 30 ans, on pensait que la disponibilité des pesticides organiques de synthèse relativement bon marché et réellement efficaces allait être la solution finale contre les populations des ravageurs. Cependant, notre naïveté concernant leur capacité à s'adapter rapidement aux pressions de selection simplistes induites par l'homme, est devenue de plus en plus apparente, tout comme le sont les impacts nuisibles des pesticides sur l'environnement L'évolution du paradigme de la lutte dirigée trouve ses origines dans ces préoccupations et il est maintenant acquis que des solutions durables pour la lutte dirigée contre des populations des ravageurs, devront reposer sur une compréhension accrue du fonctionnement des écosystèmes. La connaissance sur la dynamique des populations et des causes sous-jacentes des changements de densité des populations des ravageurs, leur écologie comportementale et leur génétique et leurs ennemis naturels sont des éléments essentiels pour la conception des stratégies de lutte intense qui soient biologiquement appropriées en lutte dirigée. Des progrés sont en train d'être accomplis et plusieurs exemples de stratégies innovatrices et des domaines prometteurs de recherche sont discutés. Le travail futur doit continuer à reposer sur une base solide de connaissances écologiques et éviter les pièges des solutions opportunistes faciles.

Type
Articles
Copyright
Copyright © ICIPE 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrewartha, H. G. and Birch, L. C. (1954) The Distribution and Abundance of Animals. The University of Chicago Press, Chicago.Google Scholar
Beckendorf, S. K. and Hoy, M. A. (1985) Genetic improvement of arthropod natural enemies through selection, hybridization or genetic engineering techniques. In Biological Control in Agricultural IPM Systems (Edited by Hoy, M. A. and Herzog, D. C.), pp. 167187. Academic Press, Orlando.CrossRefGoogle Scholar
Berger, A. (1989) Egg weight, batchsize andfecundity of the spotted stalk borer, Chilo partellus in relation to weight of females and time of oviposijion. Entomol. Exp. Appl. 50, 199207.CrossRefGoogle Scholar
Bigler, F., Bieri, M., Fritschy, A. and Seidel, K. (1988) Variation in locomotion between laboratory strains of Trichogramma maidis and impact on parasitism of eggs of Ostrinia nubilalis in the field. Entomol. Exp. Appl. 49, 283290.CrossRefGoogle Scholar
Bodenheimer, F. S. (1951) Insects as Human Food. Junk, The Hague.CrossRefGoogle Scholar
Brown, T. M. and Brogdon, W. G. (1987) Improved detection of insecticide resistance through conventional and molecular techniques. Annu. Rev. Entomol. 32, 145162.CrossRefGoogle ScholarPubMed
Bruce-Chwatt, L. J. (1985) Essential Malariology. Second edition. William Heinemann Medical Books, London.Google Scholar
Carson, R. (1962) Silent Spring. Houghton-Mifflin, Boston.Google Scholar
Chitty, D. (1960) Population processes in the vole and their relevance to general theory. Can. J. Zool. 38, 99113.CrossRefGoogle Scholar
Cockburn, A. F., Howells, A. J. and Whitten, M. J. (1989) Recombinant DNA technology and genetic control of pest insects. In Genetical and Biochemical Aspects of Invertebrate Crop Pests (Edited by Russel, G. E.), pp. 319349. Intercept, Andover.Google Scholar
Croft, B. A. (1988) Technical and policy issues in management of pesticide resistance in arthropod pests. In Innovations in Pest Management, Proceedings from an International Forum on Integrated Pest Management: Biological Controls, and Other New Approaches to Controlling Pests in Our Environment (Edited by Engelstad, S., Coli, W. M. and Carson, J. L.) Sturbridge Mass. 7–8 March 1988.Google Scholar
Crow, J. F. (1957) Genetics of insect resistance to chemicals. Annu. Rev. Entomol. 2, 227246.CrossRefGoogle Scholar
Cuisance, D., Politzar, H., Merot, P., Tambourne, I., Bauer, B., Kabore, I. and Filledier, J. (1985) La campagne de lutte integree contre des glossines dans la zone pastorale d'accueil de Sideradougou (Burkina Faso). In International Scientific Council for Trypanosomiasis Research and Control. Eighteenth Meeting, Harare.Google Scholar
DeFoliart, G. R. (1989) The human use of insects as food and as animal feed. Bull. Entomol. Soc. Am. 35, 2235.Google Scholar
Den Boer, P. J. (1968) Spreading of risk and the stabilisation of animal numbers. Acta Biotheoretia 18, 165194.CrossRefGoogle ScholarPubMed
Edwards, C. A. (1986) Agrochemicals as environmental pollutants. In Control of Pesticides Applications and Residues in Food (Edited by Hofsten, B. V. and Ekstrom, G.). Swedish Scientific Press, Uppsala, Sweden, pp. 119.Google Scholar
EPA (1989) Pesticide industry sales and usage: 1988 market estimates. EPA, Economic Analysis Branch. Washington, DC.Google Scholar
FAO (1991a) Programme for the eradication of the New World screwworm Cochliomyia hominivorax from North Africa. Report for the period 1 Feb-31 May.Google Scholar
FAO (1991b) Programme for the eradication of the New World screwworm Cochliomyia hominivorax from North Africa. Report for the period 1 June to 31 August.Google Scholar
Georghiou, G. P. (1990) Overview of insecticide resistance. In Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies (Edited by Green, M. B., LaBaron, H. M. and Moberg, W. K.), pp. 1841. American Chemical Society. Washington, DC.CrossRefGoogle Scholar
Handler, A. M. and O'brochta, D. A. (1991) Prospects for gene transformation in insects. Annu. Rev. Entomol. 36, 159183.CrossRefGoogle ScholarPubMed
Hargrove, J. W. and Langley, P. A. (1990) Sterilizing tsetse (Diptera: Glossinidae) in the field: A successful trial. Bull. ent. res. 80, 397403.CrossRefGoogle Scholar
Headley, J. C. and Hoy, M. A. (1987) Benefit/cost analysis of an integrated mite management program for almonds. J. Econ. Entomol. 80, 555559.CrossRefGoogle Scholar
Hogue, C. L. (1987) Cultural entomology. Annu. Rev. Entomol. 32, 181199.CrossRefGoogle Scholar
Hoy, M. A. (1985) Recent advances in genetics and genetic improvement of the phytoseiidae. Annu. Rev. Entomol. 30, 345370.CrossRefGoogle Scholar
Huettel, M. D., Fuerst, P. A., Maruyama, T. and Chakroborty, R. (1980) Genetic effects of multiple population bottlenecks in the mediterranean fruit fly (Ceratitis capitata). Genetics 94, 4748.Google Scholar
Huffaker, C. B., Simmohds, F. J. and Laing, J. E. (1976) The theoretical and empirical basis of biological control. In Theory and Practice of Biological Control (Edited by Huffaker, C. B. and Messenger, P. S.), pp. 4280. Academic Press, New York.Google Scholar
Kimani, S. W. (1994) Biosystematics of Cotesia species. In ICIPE Annual Scientific Report. ICIPE Science Press, Nairobi.Google Scholar
Knipling, E. F. (1982) Present status and future trends of the SIT approach to the control of arthropod pests. In Sterile Insect Technique and Radiation in Insect Control: Proceedings of a Symposium. Neuherberg 29 June-3 July 1991. International Atomic Energy Agency.Google Scholar
Koyama, J. (1982) The Japan and Taiwan projects on the control and/or eradication of fruit flies. In Sterile Insect Technique and Radiation in Insect Control: Proceedings of a Symposium. Neuherberg 29 June-3 July 1991. International Atomic Energy Agency.Google Scholar
Krebs, C. J. (1978) A review of the Chitty hypothesis of population regulation. Can. J. Zool. 56, 24632480.CrossRefGoogle Scholar
Lewis, W. J., Beevers, B., Nordlund, D. A., Gross, H. R. and Hagen, K. S. (1979) Kairomones and their use for management of entomophagous insects. IX. Investigations of various kairomone-treatment patterns for Trichogramma spp. J. Chem. Ecol. 5, 673680.CrossRefGoogle Scholar
Lewis, W. J. and Tumlinson, J. H. (1988) Host detection by chemically mediated associative learning in a parasitic wasp. Nature 331, 257259.CrossRefGoogle Scholar
Lewis, W. J., Vet, L. E. M., Tumlinson, J. H., van Lenteren, J. C. and Papaj, D. R. (1990) Variations in parasitoid foraging behavior: Essential element of a sound biological control theory. Environ. Entomol. 19, 11831193.CrossRefGoogle Scholar
Menken, S. B. J. and Ulenberg, S. A. (1989) Biochemical characters in agricultural entomology. In Genetical and Biochemical Aspects of Invertebrate Crop Pests (Edited by Russel, G. E.), pp. 129184. Intercept, Andover.Google Scholar
Milne, C. P., Eishen, F. A., Collins, J. E. and Jensen, T. L. (1989) Preliminary evidence for honey bee sperm-mediated DNA transfer. Int. Symp. Mol. Insect Sci. Tuscon. (abstract).Google Scholar
Mohyuddin, A. I., Inayatullah, C. and King, E. G. (1981) Host selection and strain occurrence in Apanteles flavipes (Cameron) (Hymenoptera: Braconidae) and its bearing on biological control of graminaceous stem-borers (Lepidoptera: Pyralidae). Bull. Entomol. Res. 71, 575581.CrossRefGoogle Scholar
Nicholson, A. J. (1954) An outline of the dynamics of animal populations. Austral. J. Zool. 2, 965.CrossRefGoogle Scholar
Nicoli, G., Benuzzi, M. and Leppla, N. C. (eds.) (1993) Proceedings 7th Workshop Global IOBC Working Group “Quality Control of Mass Reared Organisms”, Rimini, September 1993.Google Scholar
Nordlund, D. A., Jones, R. L. and Lewis, W. J. (1981) Semiochemicals: Their Role in Pest Control. Wiley, New York.Google Scholar
Odhiambo, T. R. (1977) Entomology and the problems of the tropical world. Proceedings XVth International Congress of Entomology, Washington D.C., August 19–27, 1976, pp. 5259.Google Scholar
Offori, E. D. (1993) Tsetse sterile insect technique programmes in Africa. In Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques: Proceedings of a Symposium, Vienna 12–23 October 1992. International Atomic Energy Agency.Google Scholar
Overholt, W. A., Ngi-Song, A. J., Kimani, S. K., Mbapila, J., Lammers, P. and Kioko, E. (1994) Ecological considerations of the introduction of Cotesia flavipes Cameron (Hymenoptera: Braconidae) for biological control of Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae), in Africa. Biocontr. News and Info. 15, 19N–24N.Google Scholar
Patterson, R. S., Weidhaas, D. E., Ford, H. R. and Lofgren, S. R. (1970) Suppression and elimination of an island population of Culex pipiens quinquefasciatus with sterile males. Science 168, 13681370.CrossRefGoogle ScholarPubMed
Pimentel, D. (1968) Population regulation and genetic feedback. Science 159, 14321437.CrossRefGoogle ScholarPubMed
Pimentel, D., Acquay, H., Biltonen, M., Rice, R., Silva, M., Nelson, J., Lipher, V., Giordano, S., Horiwitz, A. and D'Amore, M. (1992) Environmental and economic costs of pesticide use. BioScience 42, 10.CrossRefGoogle Scholar
Roush, R. T. and McKenzie, J. A. (1987) Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32, 361380.CrossRefGoogle ScholarPubMed
Saul, S. H. (1989) Genetics of the mediterranean fruit fly (Ceratitis capitata) (Weidemann). In Genetical and Biochemical Aspects of Invertebrate Crop Pests (Edited by Russel, G. E.), pp. 136. Intercept, Andover.Google Scholar
Saxena, R. C. and Barrion, A. A. (1987) Biotypes of insect pests of agricultural crops. Insect Sci. Applic. 8, (4/5/6), 453458.Google Scholar
Smith, R. A., Mitier, T. E. and Smith, C. N. (1973) History of Entomology. Annual Reviews Inc., Palo Alto, California.Google Scholar
Smith, R. F. and Reynolds, H. T. (1966) Principles, definitions and scope of integrated pest control. Proceedings FAO Symposium on Integrated Pest Control, Rome, 1965, FAO 1, 1117.Google Scholar
Southwood, T. R. E. (1977) Entomology and mankind. Proceedings XVth International Congress of Entomology, Washington DC, August 19–27, 1976, pp. 3651.Google Scholar
Southwood, T. R. E. (1978) Ecological Methods. Chapman and Hall, London.Google Scholar
Steiner, L. F., Harris, E. J., Mitchell, W. C., Fujimoto, M. S., Christenson, L. D. (1965) Melon fly eradication by overflooding with sterile flies. J. Econ. Entomol. 58, 519522.CrossRefGoogle Scholar
Takken, W., Oladunmade, M. A., Dengwat, L., Feldman, H. U., Onah, J. A., Tenabe, S. O. and Hamann, H. J. (1986) The eradication of Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae) using traps, insecticide-impregnated targets and the sterile insect technique in central Nigeria. Bull. Entomol. Res. 76, 275286.CrossRefGoogle Scholar
United States Congress, Office of Technology Assessment (1995) Biologically Based Technologies for Pest Control. US Government Printing Office, Washington, DC.Google Scholar
USAID (1990) Reports to the Congress of the United States: Pesticide Use and Poisoning: A Global Review. USAID, Washington, DC.Google Scholar
van Lenteren, J. C. (1986) Evaluation, mass production, quality control and release of entomophagous insects. In Biological Plant and Health Protection (Edited by Franz, J. M.), pp. 3156. Fischer, Stuttgart.Google Scholar
van Lenteren, J. C. (1987) Environmental manipulation advantageous to natural enemies of pests. In IPM Quo Vadis (Edited by Delucchi, V.), pp. 123163. Parasitis Symposium Book, Geneva.Google Scholar
van Lenteren, J. C. (1991) Insects, man and the environment: Who will survive? In Environmental Concerns: An Inter-disciplinary Exercise (Edited by Hansen, J. A.), pp. 191210. Elsevier, London.CrossRefGoogle Scholar
van Lenteren, J. C. (1993) Parasites and predators play a paramount role in pest management. In Pest Management: Biologically Based Technologies (Edited by Lumsden, R. D. and Vaughn, J. L.), pp. 6881. American Chemical Society, Washington DC.Google Scholar
Vet, L. E. M. (1983) Host-habitat location through olfactory cues by Leptopilina clavipes (Hartig) (Hym.: Eucoilidae), a parasitoid of fungivorous Drosophila: The influence of conditioning. Neth. J. Zool. 33, 225248.CrossRefGoogle Scholar
Vet, L. E. M. and Dicke, M. (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37, 141172.CrossRefGoogle Scholar
Vet, L. E. M., Wäckers, F. L. and Dicke, M. (1991) How to hunt for hiding hosts; the reliability-detectability problem for foraging parasitoids. Neth. J. Zool. 41, 202213.CrossRefGoogle Scholar
Vinson, S. B. (1988) Comparison of host characteristics that elicit host recognition behavior of parasitoid hymenoptera. In Advances in Parasitic Hymenoptera Research (Edited by Gupta, G. K. and Brill, E. J.), pp. 285291. Kinderhook, New York.Google Scholar
Walgate, R. (1990) Miracle or Menace: Biotechnology and the Third World. Panos, Budapest.Google Scholar
WHO (1957) WHO Expert committee on insecticides. WHO techn. rep. ser. 125.Google Scholar
WHO (1986) Assessment of mortality and morbidity due to unintentional pesticide poisonings. WHO/VBC/86.929.Google Scholar
Wynne-Edwards, V. C. (1962) Animal Dispersion in Relation to Social Behaviour. Oliver and Boyd, Edinburgh.Google Scholar
Yamagishi, M., Kakinohana, H., Kuba, H., Kohama, T., Nakamoto, Y., Sokei, Y. and Kingo, K. (1993) Eradication of the melon fly from Okinawa, Japan by means of the sterile insect technique. In Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques: Proceedings of A Symposium, Vienna 12–23 October 1992. International Atomic Energy Agency.Google Scholar
Zadoks, J. C. (ed) (1990) Development of farming systems: Evaluation of the five-year period 1980–1984. Pudoc, Wageningen, 90 pp.Google Scholar