Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-06T22:10:44.718Z Has data issue: false hasContentIssue false

Biological activities of the extracts and constituents of pimento, Pimenta dioica L. against the southern cattle tick, Boophilus microplus

Published online by Cambridge University Press:  19 September 2011

Heather A. Brown
Affiliation:
Department of Chemistry, University of the West Indies, Mona, Kingston 7, Jamaica
Donna A. Minott
Affiliation:
Department of Chemistry, University of the West Indies, Mona, Kingston 7, Jamaica
Conrad W. Ingram
Affiliation:
Department of Chemistry, University of the West Indies, Mona, Kingston 7, Jamaica
Lawrence A. D. Williams
Affiliation:
Department of Zoology, University of the West Indies, Mona, Kingston 7, Jamaica
Get access

Abstract

The biological activity against Boophilus microplus of extracts of the berries, bark, leaves and twigs of Pimenta dioica was examined and compared with that of eugenol, methyl eugenol and four commercial acaricides, namely dimethoate, farnesyl methyl ether, carbaryl and diazinon. The berry essential oil was more effective at inhibiting oviposition and causing mortality of the ticks than all the extracts, the commercial acaricides and methyl eugenol. At a dose of 1.0 mg/g it was 33, 12, 6, and 3 times as effective in inhibiting oviposition as the non-polar extracts of the leaves, bark, twigs and berries, respectively. The potency of the berry essential oil is attributable to eugenol, a phenyl propanoid derivative, which accounts for over 65% of the oil content.

Résumé

La bioactivité des extraits obtenus des fruits, de l'écorce, des feuilles et des lambourdes du piment Pimenta dioica a été évaluée sur la tique Boophilus microplus. L'activité de ces extraits était comparée à celle de l'eugénol, du méthyle d'eugénol ainsi qu'à celle de quatre acaricides commerciaux dont le diméthoate, le méthyl-éther de farnasil, le carbaryl et le diazinon. Par rapport aux autres extraits, aux acaricides commerciaux et au méthyle d'eugénol, l'essence obtenue des fruits était plus efficace de par son effet inhibiteur de ponte et son action mortelle chez les tiques. A la dose de 1,0 mg/g, l'huile essentielle des fruits, comparée aux autres extraits non-polaires obtenus des feuilles, de l'écorce, des lambourdes et des fruits eux-mêmes, a respectivement montré une bioactivité de 33, 12, 6, et 3 fois supérieure, de par son effet inhibiteur de ponte. Le pouvoir actif de cette essence est attribuable à l'eugénol, un dérivé d'un propanoïde de phényle qui entre à plus de 65% dans la composition de cette essence.

Type
Research Articles
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Analytical Methods Committee (1975) Determination of eugenol in oil of bay (Pimenta racemosa Miller). Analyst 100, 593600.CrossRefGoogle Scholar
Analytical Methods Committee (1981) Determination of eugenol in oil of cinnamon bark. Analyst 106, 456460.Google Scholar
Barenbaum, M. R. (1989) North American ethnobotanicals as sources of novel plant-based insecticides, pp. 1224. In Insecticides of Plant Origin (Edited by Arnason, J. T., Philogene, B. J. R. and Morand, P.). ACS Symposium Series 387, American Chemical Society, Washington DC.Google Scholar
Geunther, E. (1950) Essential oils of the plant family Myrtaceae, pp. 370377. In The Essential Oils (Volume IV). Van Nostrand, New York.Google Scholar
Grainge, M., Ahmed, S., Mitchell, N. C. and Hylin, J. W. (1986) Plant species reportedly possessing pest control properties. An East-West Centre/University of Hawaii Database, East-West Centre, Honolulu, HI, 249 pp.Google Scholar
Hassanali, A. and Lwande, W. (1989) Antipest secondary metabolites from African plants, pp. 7894. In Insecticides of Plant Origin (Edited by Arnason, J. T., Philogene, B. J. R. and Morand, P.). ACS Symposium Series 387, American Chemical Society, Washington DC.CrossRefGoogle Scholar
International Trade Centre (UNCTAD/GATT, Denmark) (1986) Essential Oils and Oleoresins. A Study of Selected Producers and Major Markets, 208 pp.Google Scholar
Klocke, J. A., Balandrin, M. F., Adams, R. P. and Kingsford, E. (1985) Insecticidal chromenes from the volatile oil of Hermizonia fitchii. J. Chem. Ecol. 11, 701712.CrossRefGoogle ScholarPubMed
Klocke, J. A., Balandrin, M. F., Barnaby, M. A. and Yamasaki, R. B. (1989) Limonoids, phenolics and furanocoumarins as insect antifeedants, repellents and growth inhibitory compounds, pp. 136149. In Insecticides of Plant Origin (Edited by Arnason, J. T., Philogene, B. J. R. and Morand, P.). ACS Symposium Series 387, American Chemical Society, Washington DC.CrossRefGoogle Scholar
Kossou, D. K. (1989) Evaluation des differents produits du neem Azadirachta indica A. Juss pour le controle de Sitophilus zeamais Motsch. sur le mais en post recolte. Insect Sci. Applic., 10, 365372.Google Scholar
Mansingh, A. and Rawlins, S. C. (1977) Antigonadotropic action of insect hormone analogues on the cattle tick Boophilus microplus. Naturwissenschaften 64, 41.CrossRefGoogle ScholarPubMed
Miller, J. C. and Miller, J. N. (1988) Statistics for Analytical Chemistry (2nd edn). Ellis Horwood Limited Publishers, Chichester. 277 pp.Google Scholar
Mwangi, R. W. and Kabaru, J. M. (1991) Insect antifeedant and growth regulating compounds in different parts of Melia volkensii, pp. 13–14. In 4th NAPRECA Symposium on Natural Products, Addis Ababa, Ethiopia.Google Scholar
Rawlins, S. C. and Mansingh, A. (1987) A review of tick and screwworm affecting livestock in the Caribbean. Insect Sci. Applic. 8, 259267.Google Scholar
Rodriguez, E. (1982) Cytotoxic and insectícidal chemicals of desert plants, pp. 292300. In Plant Resistance to Insects (Edited by Hedin, P. A.). ACS Symposium Series 208, American Chemical Society, Washington DC.Google Scholar
Saxena, V. S. (1980) Carene ethyl ether and fractions of Anethi oil as antifeedant. Indian J. Entomol. 42, 780782.Google Scholar
Seigler, D. S. (1982) Role of lipids in plant resistance to insects, pp. 301–323. In Plant Resistance to Insects, (Edited by Hedin, P. A.). ACS Symposium Series 208, American Chemical Society, Washington DC.Google Scholar
Telfer, W. H. (1965) The mechanism and control of yolk formation. Annu. Rev. Entomol. 10, 161184.CrossRefGoogle Scholar
Williams, L. A. D. (1991) Biological activity in leaf extracts of Artocarpus altilis Park, and other Jamaican plants. PhD Thesis, University of the West Indies, Mona, 258 pp.Google Scholar
Zar, J. H. (1974) Biostatistical Analysis. Prentice Hall Publishers, New York. 619 pp.Google Scholar